zoukankan      html  css  js  c++  java
  • 4.28

    package word;
    
    import java.io.BufferedReader;
    import java.io.File;
    import java.io.FileInputStream;
    import java.io.FileReader;
    import java.io.InputStreamReader;
    import java.util.ArrayList;
    import java.util.Comparator;
    import java.util.HashMap;
    import java.util.Iterator;
    import java.util.List;
    import java.util.Map;
    import java.util.Scanner;
    import java.util.Set;
    
    public class Text {
    
        public static void main(String[] args) throws Exception {
            //BufferedReader br = new BufferedReader(new InputStreamReader(new FileInputStream("piao.txt")));
            File word=new File("F:\JAVA\JAVA\新建文件夹\word\piao.txt");
            BufferedReader br=new BufferedReader(new FileReader(word));
            
    
            
            StringBuffer d=new StringBuffer();
            String s=null;
            String s1="";
            
            
            
            while((s=br.readLine())!=null) {
                d.append(s);
            }
            
            Scanner scanner=new Scanner(word);
            HashMap<String, Integer > hashMap=new HashMap<String,Integer>();
            List<Map.Entry<String, Integer>> list = new ArrayList<>();
            while(scanner.hasNextLine()) {
                String line=scanner.nextLine();
                System.out.println(line);
                String[] lineWords=line.split("\W+");
                Set<String> wordSet=hashMap.keySet();
                for(int i=0;i<lineWords.length;i++)
                {
                    if(wordSet.contains(lineWords[i]))
                    {
                        Integer number=hashMap.get(lineWords[i]);
                        number++;
                        hashMap.put(lineWords[i], number);
                    }
                    else 
                    {
                        hashMap.put(lineWords[i], 1);
                    }
                }
    
            }
            
            
                for(Map.Entry<String, Integer> entry : hashMap.entrySet()){
                    list.add(entry); //将map中的元素放入list中
                }
            list.sort(new Comparator<Map.Entry<String, Integer>>(){
                @Override
                 public int compare(Map.Entry<String, Integer> o1, Map.Entry<String, Integer> o2) {
                      return o2.getValue().compareTo(o1.getValue());} 
                     //逆序(从大到小)排列,正序为“return o1.getValue()-o2.getValue”
          }); 
    
            for (int i = 0; i < list.size(); i++) {
                System.out.println(list.get(i).getKey() + ": " + list.get(i).getValue());
            }
            /*Iterator<String> iterator=hashMap.keySet().iterator();
            while(iterator.hasNext())
            {
                //String word1=iterator.next();
                
                //System.out.printf("单词:%-12s 出现次数:%d
    ",word1,hashMap.get(word1));
                
            }*/
            br.close();
            
            
            BufferedReader br1 = new BufferedReader(new InputStreamReader(new FileInputStream("piao.txt")));
            int[] count  = new int[26];
            int[] COUNT  = new int[26];
            
            char[] c = new char[1];
            int len = br1.read(c);
            while(len!=-1) {
                
                if(c[0]<='Z'&&c[0]>='A') {
                    int number = c[0];
                    COUNT[number-65]++;
                }
                if(c[0]<='z'&&c[0]>='a') {
                    int number = c[0];
                    count[number-97]++;
                }
                len = br1.read(c);
            }
            Print(count, COUNT);
            System.out.print("
    b.txt文件读取完毕!");
            br1.close();
            
        }
        public static void Print(int[] count,int[] COUNT) {
            double sum=0;
            char[] c=new char[26];
            double[] p=new double[26];
            for(int j=0;j<26;j++) {
                if(count[j]>0&&COUNT[j]>0) {
                    sum=sum+count[j]+COUNT[j];
                }            
            }
            System.out.println("总数为:"+sum);
            for(int i=0;i<26;i++) {
                if(count[i]>0) {
                    char lowerCase = (char)(i+97);
                    System.out.println(lowerCase+"("+count[i]+")");
                    double percent;
                    percent=count[i]/sum;
                    c[i]=lowerCase;
                    //System.out.println("百分比为:"+percent);
                }
                if(COUNT[i]>0) {
                    char upperCase = (char)(i+65);
                    System.out.println(upperCase+"("+COUNT[i]+")");
                    double percent1;
                    percent1=COUNT[i]/sum;
                    //System.out.println("百分比为:"+percent1);
                } 
                if(count[i]>0&&COUNT[i]>0) {
                    
                    System.out.println("总数为:"+"("+ (count[i]+COUNT[i]) +")");
                    double percent2;
                    percent2=(count[i]+COUNT[i])/sum;
                    p[i]=percent2;
                    System.out.println("百分比为:"+String.format("%.2f", percent2));
                }
                
                
                
            }
            double t;
            char c1;
            for(int q=0;q<26;q++) {
                for(int w=q+1;w<26;w++) {
                    if(p[q]<p[w]) {
                        t=p[q];
                        p[q]=p[w];
                        p[w]=t;
                        c1=c[q];
                        c[q]=c[w];
                        c[w]=c1;
                    }
                }
            }
            for(int q=0;q<26;q++) {
                System.out.println(c[q]+":"+String.format("%.2f", p[q]));
            }
            
        }
    
    
    }

  • 相关阅读:
    【神经网络与深度学习】Caffe Model Zoo许多训练好的caffemodel
    【计算机视觉】论文笔记:Ten years of pedestrian detection, what have we learned?
    【计算机视觉】论文笔记:Ten years of pedestrian detection, what have we learned?
    【计算机视觉】行人检测资源汇总
    【计算机视觉】行人检测资源汇总
    【神经网络与深度学习】卷积神经网络(CNN)
    【神经网络与深度学习】卷积神经网络(CNN)
    【CUDA开发】__syncthreads的理解
    【CUDA开发】__syncthreads的理解
    微信公众号-增加智能自动回复的功能--使用图灵机器人
  • 原文地址:https://www.cnblogs.com/quyangzhangsiyuan/p/10816893.html
Copyright © 2011-2022 走看看