zoukankan      html  css  js  c++  java
  • 多线程丶

    多线程核心概念

    • 线程就是独立的执行路径
    • 在程序运行时,即使没有自己创建线程,后台也会有多个线程,如主线程(用户线程)、gc线程(守护线程)
    • main()称之为主线程,为系统的入口,用于执行整个程序
    • 在一个进程中,如果开辟了多个线程,线程的运行由调度器安排调度,调度器是与操作系统紧密相关的,先后顺序是不能人为干预的
    • 对同一份资源操作时,会存在资源抢夺的问题,需要加入并发控制
    • 线程会带来额外的开销,如CPU调度时间、并发控制的开销
    • 每个线程在自己的工作内存交互,内存控制不当会造成数据不一致

    三种方式创建线程

    在线Jdk8文档搜Thread

    继承Thread类(不建议使用,OOP单继承局限性)

    官方文档案例

    class PrimeThread extends Thread {
        long minPrime;
        PrimeThread(long minPrime) {
            this.minPrime = minPrime;
        }
    
        public void run() {
            // compute primes larger than minPrime
            . . .
        }
    }
    //然后,以下代码将创建一个线程并启动它运行:
    PrimeThread p = new PrimeThread(143);
    p.start();//Thread风格启动
    

    练习案例一

    public class TestThread1 extends Thread {
        @Override
        public void run() {
            for (int i = 0; i < 20; i++) {
                System.out.println("我在看代码~~~~~~~" + i);
            }
        }
    
        public static void main(String[] args) {
            //main线程,主线程
            //创建一个线程对象
            TestThread1 testThread1 = new TestThread1();
            testThread1.start();//线程开启不一定立即执行,由cpu调度
    
            for (int i = 0; i < 200; i++) {
                System.out.println("我在学习多线程~~~~" + i);
            }
            //执行效果:主线程和创建的线程穿插着执行
        }
    }
    

    练习案例二(Jar包

    import org.apache.commons.io.FileUtils;
    import java.io.File;
    import java.io.IOException;
    import java.net.URL;
    
    //练习Thread,实现多线程同步下载图片
    public class TestThread2 extends Thread {
        private String url;//下载地址
        private String name;//文件名
    
        public TestThread2(String url,String name) {
            this.url = url;
            this.name = name;
        }
    
        //线程执行体
        @Override
        public void run() {
            WebDownloader webDownloader = new WebDownloader();
            webDownloader.downloader(url, name);
            System.out.println("下载了文件名为:"+name+"的文件");
        }
    
        public static void main(String[] args) {
            TestThread2 t1 = new TestThread2("https://img2020.cnblogs.com/blog/874710/202010/874710-20201027164829816-1026952085.png", "1026952085.png");
            TestThread2 t2 = new TestThread2("https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/732720a8702e414daa38542eddd44519~tplv-k3u1fbpfcp-zoom-1.image", "zoom-1.image");
            TestThread2 t3 = new TestThread2("https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/4c2617fe68944ac08a37f3b5b4c15b09~tplv-k3u1fbpfcp-zoom-1.image", "zoom-2.image");
    //同时下载图片 不一样的图片
            t1.start();
            t2.start();
            t3.start();
        }
    }
    
    class WebDownloader{
        public void downloader(String url,String name) {
            try {
                FileUtils.copyURLToFile(new URL(url),new File(name));//下载到项目根目录
            } catch (IOException e) {
                e.printStackTrace();
                System.out.println("IO异常,downloader方法出现问题");
            }
        }
    }
    

    实现Runnable接口(推荐)

    官方文档案例

    class PrimeRun implements Runnable {
        long minPrime;
        PrimeRun(long minPrime) {
            this.minPrime = minPrime;
        }
    
        public void run() {
            // compute primes larger than minPrime
            . . .
        }
    }
    // 然后,以下代码将创建一个线程并启动它运行:
    PrimeRun p = new PrimeRun(143);
    new Thread(p).start();//runnable风格启动
    

    练习案例

    public class TestThread3 implements Runnable {
        @Override
        public void run() {
            for (int i = 0; i < 20; i++) {
                System.out.println("我在看代码~~~~~~~" + i);
            }
        }
    
        public static void main(String[] args) {
            TestThread3 testThread3 = new TestThread3();
            new Thread(testThread3).start();//代理
    
            for (int i = 0; i < 200; i++) {
                System.out.println("我在学习多线程~~~~" + i);
            }
        }
    }
    

    练习案例二

    public class TestThread2 implements Runnable {
        private String url;//下载地址
        private String name;//文件名
    
        public TestThread2(String url,String name) {
            this.url = url;
            this.name = name;
        }
    
        //线程执行体
        @Override
        public void run() {
            WebDownloader webDownloader = new WebDownloader();
            webDownloader.downloader(url, name);
            System.out.println("下载了文件名为:"+name+"的文件");
        }
    
        public static void main(String[] args) {
            TestThread2 t1 = new TestThread2("https://img2020.cnblogs.com/blog/874710/202010/874710-20201027164829816-1026952085.png", "1026952085.png");
            TestThread2 t2 = new TestThread2("https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/732720a8702e414daa38542eddd44519~tplv-k3u1fbpfcp-zoom-1.image", "zoom-1.image");
            TestThread2 t3 = new TestThread2("https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/4c2617fe68944ac08a37f3b5b4c15b09~tplv-k3u1fbpfcp-zoom-1.image", "zoom-2.image");
    
            new Thread(t1).start();
            new Thread(t2).start();
            new Thread(t3).start();
        }
    }
    
    class WebDownloader{
        public void downloader(String url,String name) {
            try {
                FileUtils.copyURLToFile(new URL(url),new File(name));//下载到项目根目录
            } catch (IOException e) {
                e.printStackTrace();
                System.out.println("IO异常,downloader方法出现问题");
            }
        }
    }
    

    练习案例三(多个线程操作同一个资源(线程不安全))

    public class TestThread4 implements Runnable{
        private int ticket = 10;
        @Override
        public void run() {
            while (true) {
                if(ticket<=0){
                    break;
                }
                //模拟延时
                try {
                    Thread.sleep(200);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(Thread.currentThread().getName()+"-->拿到了第"+ticket--+"票");
            }
        }
    
        public static void main(String[] args) {
            TestThread4 testThread4 = new TestThread4();
            new Thread(testThread4,"小明").start();
            new Thread(testThread4,"老师").start();
            new Thread(testThread4,"黄牛党").start();
        }
    }
    

    案例练习四

    public class TestThread5 implements Runnable{
        //胜利者
        public static String winner;
        @Override
        public void run() {
            for (int i = 0; i <= 100; i++) {
                //模拟兔子睡觉
                if (Thread.currentThread().getName().equals("兔子") && i % 10 == 0) {
                    try {
                        Thread.sleep(2);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                //判断比赛是否结束
                if (gameover(i)) {
                    break;
                }
                System.out.println(Thread.currentThread().getName()+"-->跑了"+i+"米");
            }
        }
    
        //比赛是否结束
        public boolean gameover(int steps){
            if (null != winner) {
                return true;
            }else{
                if (steps >= 100) {
                    winner = Thread.currentThread().getName();
                    System.out.println("winner is:" + winner);
                    return true;
                }
            }
            return false;
        }
    
        public static void main(String[] args) {
            TestThread5 testThread5 = new TestThread5();
            new Thread(testThread5,"兔子").start();
            new Thread(testThread5,"乌龟").start();
        }
    }
    

    实现Callable接口

    • 实现Callable接口,需要返回值类型
    • 重写call方法,需要抛出异常
    • 创建目标对象
    • 创建执行服务:ExecutorService ser = Executors.newFixedThreadPool(3);
    • 提交执行:Future r1 = ser.submit(t1);
    • 获取结果:Boolean rs1 = r1.get();
    • 关闭服务:ser.shutdown();

    案例

    public class TestThread6 implements Callable<Boolean> {
        private String url;//下载地址
        private String name;//文件名
    
        public TestThread6(String url,String name) {
            this.url = url;
            this.name = name;
        }
    
        @Override
        public Boolean call() throws Exception {
            WebDownloader webDownloader = new WebDownloader();
            webDownloader.downloader(url, name);
            System.out.println("下载了文件名为:"+name+"的文件");
            return true;
        }
    
        public static void main(String[] args) throws ExecutionException, InterruptedException {
            TestThread6 t1 = new TestThread6("https://img2020.cnblogs.com/blog/874710/202010/874710-20201027164829816-1026952085.png", "1026952085.png");
            TestThread6 t2 = new TestThread6("https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/732720a8702e414daa38542eddd44519~tplv-k3u1fbpfcp-zoom-1.image", "zoom-1.image");
            TestThread6 t3 = new TestThread6("https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/4c2617fe68944ac08a37f3b5b4c15b09~tplv-k3u1fbpfcp-zoom-1.image", "zoom-2.image");
            //创建执行服务
            ExecutorService ser = Executors.newFixedThreadPool(3);
            //提交执行
            Future<Boolean> r1 = ser.submit(t1);
            Future<Boolean> r2 = ser.submit(t2);
            Future<Boolean> r3 = ser.submit(t3);
            //获取结果
            Boolean rs1 = r1.get();
            Boolean rs2 = r2.get();
            Boolean rs3 = r3.get();
            //关闭服务
            ser.shutdown();
        }
    }
    
    class WebDownloader{
        public void downloader(String url,String name) {
            try {
                FileUtils.copyURLToFile(new URL(url),new File(name));//下载到项目根目录
            } catch (IOException e) {
                e.printStackTrace();
                System.out.println("IO异常,downloader方法出现问题");
            }
        }
    }
    

    静态代理模式

    public class StaticProxy {
        public static void main(String[] args) {
            WeddingCompany weddingCompany = new WeddingCompany(new You());
            weddingCompany.happyMarry();
        }
    }
    
    interface Marry{//首先,接口定义规则是没有问题的
        void happyMarry();
    }
    
    class You implements Marry {//实现结婚的接口也是正常思维
        @Override
        public void happyMarry() {
            System.out.println("结婚超开心!");
        }
    }
    
    /**
     * 代理对象的套路是,它搞一个构造函数来接收真是结婚对象
     * 同时它又继承同样的结婚接口,而要做的是在实现结婚方法的过程中做文章
     */
    class WeddingCompany implements Marry{
        private Marry target;
        public WeddingCompany(Marry target) {
            this.target = target;
        }
    
        @Override
        public void happyMarry() {
            before();
            this.target.happyMarry();
            after();
        }
    
        private void after() {
            System.out.println("开心回家");
        }
    
        private void before() {
            System.out.println("布置婚礼");
        }
    }
    

    类比

    new Thread(() ->System.out.println("我爱你")).start();
    //Thread实现了Runnable接口,而它构造函数接收的对象也实现了Runnable接口
    

    Lamda表达式

    • 避免匿名内部类定义过多
    • 函数式编程

    如果某个接口只包含了一个抽象方法,那么它就是一个函数式接口,我们可以通过Lamda表达式来创建该接口的对象。

    进化(推导)过程

    public class TestLamda {
    
        //2、静态内部类
        static class ILike2 implements ILike {
            @Override
            public void lamda(int x) {
                System.out.println("i like lamda " + x);
            }
        }
    
        public static void main(String[] args) {
            ILike like = new Like();
            like.lamda(1);
    
            like = new ILike2();
            like.lamda(2);
    
            //3、局部内部类
            class ILike3 implements ILike {
                @Override
                public void lamda(int x) {
                    System.out.println("i like lamda " + x);
                }
            }
            like = new ILike3();
            like.lamda(3);
    
            //4、匿名内部类
            like = new ILike() {
                @Override
                public void lamda(int x) {
                    System.out.println("i like lamda " + x);
                }
            };
            like.lamda(4);
    
            //5、Lamda表达式(基于这个接口是函数时接口,只有一个方法)
            like = (int x) -> {
                System.out.println("i like lamda " + x);
            };
            like.lamda(5);
    
            //6、继续简化:去掉参数类型
            like = (x) -> {
                System.out.println("i like lamda " + x);
            };
            like.lamda(6);
    
            //7、继续简化:去掉括号(前提是参数只有一个)
            like = x -> {
                System.out.println("i like lamda " + x);
            };
            like.lamda(7);
    
            //8、继续简化:去掉大括号(前提是大括号中只有一行)
            like = x -> System.out.println("i like lamda " + x);
            like.lamda(8);
        }
    }
    
    //定义一个函数式接口
    interface ILike {
        void lamda(int x);
    }
    
    //1、实现类
    class Like implements ILike {
        @Override
        public void lamda(int x) {
            System.out.println("i like lamda " + x);
        }
    }
    

    线程状态

    Jdk中是6种:NEW、WAITING、TIMED_WAITING、RUNNABLE、BLOCKED、TERMINATED

    (没有列到Jdk中的状态估计是底层C++的,不需要Java参与的吧?running、ready)

    img

    线程方法

    • setPriority(int newPrority)优先级
    • static void sleep(long millis)阻塞状态,抛出InterruptedException异常
    • void join()插队,InterruptedException异常
    • static void yield()暂停当前正在执行的线程对象,并执行其他线程
    • void interrupt()中断线程(别用这个)
    • boolean isAlive()知死活

    停止线程

    不要使用Jdk提供的stop()和destroy()方法,推荐线程自己停止下来:用标志位实现

    public class TestStop implements Runnable{
        boolean flag = true;
        @Override
        public void run() {
            while (flag) {
                System.out.println("run …… Thread");
            }
        }
    
        public void stop() {
            this.flag = false;
        }
    
        public static void main(String[] args) {
            TestStop testStop = new TestStop();
            new Thread(testStop).start();
            //上面是用户线程就绪,交给cpu调度。下面是主线程要做的工作
            for (int i = 0; i <= 100; i++) {
                System.out.println("主线程--->"+i);
                if (100 == i) {
                    System.out.println("主线程 即将把 用户线程 停止掉");
                    testStop.stop();
                }
            }
        }
    }
    

    线程休眠

    • sleep(时间)指定当前线程阻塞的毫秒数
    • sleep存在异常InterruptedException
    • sleep时间达到后线程进入就绪状态
    • sleep可以模拟网络延时倒计时等
    • 每一个对象都有一个锁,sleep不会释放锁

    线程礼让

    • 让当前正在执行的线程暂停,但不阻塞
    • 将线程从运行状态转为就绪状态
    • 让CPU重新调度,礼让不一定成功,看CPU心情
    public class TestYield {
        public static void main(String[] args) {
            MyYield myYield = new MyYield();
            new Thread(myYield,"a").start();
            new Thread(myYield,"b").start();
        }
    }
    
    class MyYield implements Runnable{
        @Override
        public void run() {
            System.out.println(Thread.currentThread().getName()+"-->开始执行");
            Thread.yield();//礼让
            System.out.println(Thread.currentThread().getName()+"-->停止执行");
        }
    }
    

    线程强制执行

    join插队,会让其他线程阻塞,别用这玩意

    public class TestJoin implements Runnable{
        @Override
        public void run() {
            for (int i = 0; i < 10000; i++) {
                System.out.println("用户线程正在执行~");
            }
        }
    
        public static void main(String[] args) throws InterruptedException {
            TestJoin testJoin = new TestJoin();
            Thread thread = new Thread(testJoin);
            thread.start();
    
            for (int i = 0; i < 500; i++) {
                if (200 == i) {
                    thread.join();//用户线程插队,主线程阻塞,等vip跑完了才就绪执行
                }
                System.out.println("主线程--->" + i);
            }
        }
    }
    

    检测线程状态

    两个Thread.sleep()的受体不一样!

    这里发现个问题,sleep后没有进入BLOCKED状态啊,不是说要进入阻塞状态吗

    public class TestThreadState {
        public static void main(String[] args) throws InterruptedException {
            Thread thread = new Thread(() -> {
                for (int i = 0; i < 5; i++) {
                    try {
                        Thread.sleep(1000);//用户线程等待1s 其间为TIMED_WAITING状态
                        System.out.println(Thread.currentThread().getName()+"<---用户线程");
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                System.out.println("------------------");
            });
    
            //观察状态
            Thread.State state = thread.getState();
            System.out.println(state);
    
            //观察启动后的状态
            thread.start();
            state = thread.getState();
            System.out.println(state);
    
            while (state != Thread.State.TERMINATED) {//如果用户线程没有死掉,主线程等100ms,打印用户线程状态
                Thread.sleep(100);
                System.out.println(Thread.currentThread().getName()+"<---主线程");
                state = thread.getState();
                System.out.println(state);
            }
        }
    }
    

    线程优先级

    • Java提供一个线程调度器来监控进入就绪状态后的所有线程,按照优先级进行调度

    • 优先级1-10:(影响的是概率)

      • MIN_PRIORITY = 1
      • NORM_PRIORITY = 5
      • MAX_PRIORITY = 10
    • 方法:setPriority、getPriority

    public class TestPriority {
        public static void main(String[] args) {
            System.out.println(Thread.currentThread().getName() + "---->" + Thread.currentThread().getPriority());
            MyPriority myPriority = new MyPriority();
            Thread t1 = new Thread(myPriority);
            Thread t2 = new Thread(myPriority);
            Thread t3 = new Thread(myPriority);
            Thread t4 = new Thread(myPriority);
            Thread t5 = new Thread(myPriority);
            Thread t6 = new Thread(myPriority);
    
            t1.start();
    
            t2.setPriority(1);
            t2.start();
    
            t3.setPriority(4);
            t3.start();
    
            t4.setPriority(Thread.MAX_PRIORITY);
            t4.start();
    
            t5.setPriority(8);
            t5.start();
    
            t6.setPriority(7);
            t6.start();
        }
    }
    
    class MyPriority implements Runnable{
        @Override
        public void run() {
            System.out.println(Thread.currentThread().getName() + "---->" + Thread.currentThread().getPriority());
        }
    }
    

    守护线程

    daemon

    • 线程分为用户线程和守护线程
    • 虚拟机必须确保用户线程执行完毕
    • 虚拟机不用等待守护线程执行完毕
    • 如,后台记录日志,监控内存,垃圾回收等
    public class TestDaemon {
        public static void main(String[] args) {
            God god = new God();
            You you = new You();
    
            Thread thread = new Thread(god);
            thread.setDaemon(true);
            thread.start();
    
            new Thread(you).start();
        }
    }
    
    class God implements Runnable {
        @Override
        public void run() {
            while (true) {
                System.out.println("上帝保佑着你");
            }
        }
    }
    
    class You implements Runnable {
        @Override
        public void run() {
            for (int i = 0; i < 36500; i++) {
                System.out.println("你一生都开心的活着");
            }
            System.out.println("-----goodbay world");
        }
    }
    

    线程同步

    • 当一个线程获得对象的排他锁,独占资源,其他线程必须等待
    • 一个线程持有锁,会导致其他所有需要此锁的线程挂起
    • 在多线程竞争下,加锁、释放锁会导致比较多的上下文切换和调度延时,引起性能问题
    • 如果一个优先级高的线程等待一个优先级低的线程释放锁,会导致优先级倒置,引起性能问题

    案例:线程不安全的购票(buy方法加synchronized解决)

    public class UnSafeBuyTicket {
        public static void main(String[] args) {
            BuyTicket buyTicket = new BuyTicket();
    
            new Thread(buyTicket, "苦逼的我").start();
            new Thread(buyTicket, "牛逼的你们").start();
            new Thread(buyTicket, "可恶的黄牛党").start();
        }
    }
    
    class BuyTicket implements Runnable {
        private int ticketNums = 10;
        boolean flag = true;
    
        @Override
        public void run() {
            while (flag) {
                try {
                    buy();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    
        private void buy() throws InterruptedException {
            if (ticketNums <= 0) {
                flag = false;
                return;
            }
    
            Thread.sleep(100);
    
            System.out.println(Thread.currentThread().getName() + "买到" + ticketNums--);
        }
    }
    

    案例:线程不安全的银行(解决方法:run方法中的内容都放到synchronized (account) {}代码块中,要操作account所以所著它)

    public class UnsafeBank {
        public static void main(String[] args) {
            Account account = new Account(100, "结婚基金");
            Drawing you = new Drawing(account, 50, "你");
            Drawing girlFriend = new Drawing(account, 100, "girlFriend");
    
            you.start();
            girlFriend.start();
        }
    }
    
    //银行 模拟取款
    class Drawing extends Thread{
        Account account;//账户
        int drawingMoney;//取了多少钱
        int nowMoney;//现在手里有多少钱
    
        public Drawing(Account account, int drawingMoney, String name) {
            super(name);//给线程设置名字
            this.account = account;
            this.drawingMoney = drawingMoney;
        }
    
        //取钱
        @Override
        public void run() {
            //判断有没有钱
            if (account.money - drawingMoney < 0) {
                System.out.println(Thread.currentThread().getName() + "钱不够,取不了");
                return;
            }
    
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
    
            //卡内余额=卡内余额 - 取的钱
            account.money = account.money - drawingMoney;
            //你的手里的钱
            nowMoney = nowMoney + drawingMoney;
    
            System.out.println(account.name + "余额为:" + account.money);
            //因为继承关系,this.getName()就是Thread.currentThread().getName()
            System.out.println(this.getName()+"手里的钱"+nowMoney);
        }
    }
    
    class Account{
        int money;//余额
        String name;//卡名
    
        public Account(int money, String name) {
            this.money = money;
            this.name = name;
        }
    }
    

    案例:线程不安全的集合(解决方法:操作集合之前先将它锁住synchronized (strings) {})

    import java.util.ArrayList;
    
    public class UnSafeList {
        public static void main(String[] args) throws InterruptedException {
            ArrayList<String> strings = new ArrayList<>();
            for (int i = 0; i < 10000; i++) {
                new Thread(()->{
                    strings.add(Thread.currentThread().getName());
                    //问题出在可能会有多个线程同时给集合中的某一项赋值 add了10000次实际却不足10000项
                }).start();
            }
            Thread.sleep(3000);
            System.out.println(strings.size());
        }
    }
    

    同步方法

    Synchronized方法和Synchronized块

    • 同步块:synchronized(Obj){},Obj称之为同步监视器(Obj可以是任何对象,但是推荐使用共享资源作为同步监视器)

    • 若一个大的方法声明为Synchronized将会影响效率

    • 同步方法中无需指定同步监视器,因为同步方法的同步监视器就是this,就是这个对象本身,或者class

    • 同步监视器的执行过程:

      • 第一个线程访问,锁定同步监视器,执行其中代码
      • 第二个线程访问,发现同步监视器被锁定,无法访问
      • 第一个线程访问完毕,解锁同步监视器
      • 第二个线程访问,发现同步监视器没有锁,然后锁定并访问

    CopyOnWriteArrayList

    import java.util.concurrent.CopyOnWriteArrayList;
    
    //测试JUC安全类型集合 CopyOnWriteArrayList
    public class TestJUC {
        public static void main(String[] args) {
            CopyOnWriteArrayList<String> list = new CopyOnWriteArrayList<>();
            for (int i = 0; i < 10000; i++) {
                new Thread(() -> {
                    list.add(Thread.currentThread().getName());
                }).start();
            }
    
            try {
                Thread.sleep(3000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(list.size());
        }
    }
    

    死锁

    产生死锁的4个必要条件(干掉其中任一条件即可消除死锁)

    • 互斥条件:一个资源每次只能被一个进程使用
    • 请求与保持条件:一个资源因请求资源而阻塞时,对已获得的资源保持不放
    • 不剥夺条件:进程已获得资源,在未使用完之前,不能强行剥夺
    • 循环等待条件:若干线程之间形成一种头尾相接的循环等待资源的关系

    案例(解决办法:调整synchronized位置)

    //死锁:多个线程相互抱着对方的资源,形成僵持
    public class DeadLock {
        public static void main(String[] args) {
            Makeup g1 = new Makeup(0, "灰姑凉");
            Makeup g2 = new Makeup(1, "白雪公主");
    
            g1.start();
            g2.start();
        }
    }
    
    //口红
    class Lapstick{
    }
    
    //镜子
    class Mirror{
    }
    
    //化妆
    class Makeup extends Thread {
        //需要的资源
        static Lapstick lapstick = new Lapstick();
        static Mirror mirror = new Mirror();
    
        int choice;//选择
        String girlName;
    
        public Makeup(int choice, String girlName) {
            this.choice = choice;
            this.girlName = girlName;
        }
    
        @Override
        public void run() {
            try {
                makeup();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    
        public void makeup() throws InterruptedException {
            if (0 == choice) {
                synchronized (lapstick) {
                    System.out.println(this.girlName + "获得口红的锁");
                    Thread.sleep(1000);
                    synchronized (mirror) {
                        System.out.println(this.girlName + "获得镜子的锁");
                    }
                }
            }else{
                synchronized (mirror) {
                    System.out.println(this.girlName + "获得镜子的锁");
                    Thread.sleep(2000);
                    synchronized (lapstick) {
                        System.out.println(this.girlName + "获得口红的锁");
                    }
                }
            }
        }
    }
    

    Lock

    JUC并发编程下的类

    • 显示定义同步锁对象来实现线程同步
    • java.util.concurrent.locks.Lock接口是控制多个线程对共享资源进行访问的工具
    • ReentrantLock类(可重入锁)实现了Lock,在实现线程安全的控制中较为常用

    案例

    import java.util.concurrent.locks.ReentrantLock;
    
    public class TestLock {
        public static void main(String[] args) {
            TestLock2 testLock2 = new TestLock2();
            new Thread(testLock2).start();
            new Thread(testLock2).start();
            new Thread(testLock2).start();
        }
    }
    
    class TestLock2 implements Runnable{
    
        int ticketNums = 10;
        private final ReentrantLock lock = new ReentrantLock();
    
        @Override
        public void run() {
            while(true){
                /*未加锁之前
                * lock.lock();
                    if (ticketNums > 0) {
                        try {
                            Thread.sleep(1000);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                        System.out.println(ticketNums--);
                    }else{
                        break;
                    }
                * */
                try{
                    lock.lock();
                    if (ticketNums > 0) {
                        try {
                            Thread.sleep(1000);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                        System.out.println(ticketNums--);
                    }else{
                        break;
                    }
                }finally {
                    lock.unlock();
                }
            }
        }
    }
    

    Lock与synchronized对比

    • Lock是显式锁(手动开启和关闭)synchronized是隐式锁,出了作用域自动释放
    • Lock只有代码块锁,synchronized有代码块和方法锁
    • 使用Lock锁,JVM将花费较少的时间来调度线程,性能更好。并且具有更好的扩展性(提供更多的子类)
    • 优先使用顺序:Lock>同步代码块(已进入了方法体,分配了相应资源)>同步方法(在方法体之外)

    线程通信

    应用场景(生产者和消费者问题)

    线程通信的方法

    • wait()表示线程一直等待,直到其他线程通知,与sleep不同,会释放锁
    • wait(long timeout)指定等待的毫秒数
    • notify()唤醒一个处于等待状态的线程
    • notifyAll()唤醒同一个对象上所有调用wait()方法的线程,优先级别高的线程优先调度

    均是Object类的方法,都只能在同步方法或同步代码块中使用,否则会抛出异常IllegalMonitorStateException

    image-20201029124624779

    方案一:管程法

    //测试:生产者消费者模型-->利用缓冲区解决:管程法
    //生产者 消费者 产品 缓冲区
    public class TestPC {
        public static void main(String[] args) {
            SynContainer synContainer = new SynContainer();
            new Product(synContainer).start();
            new Consumer(synContainer).start();
        }
    }
    
    class Product extends Thread {
        SynContainer synContainer;
    
        public Product(SynContainer synContainer) {
            this.synContainer = synContainer;
        }
    
        @Override
        public void run() {
            for (int i = 0; i < 100; i++) {
                synContainer.push(new Chicken(i));
                System.out.println("生产了" + i + "只鸡");
            }
        }
    }
    
    class Consumer extends Thread {
        SynContainer synContainer;
    
        public Consumer(SynContainer synContainer) {
            this.synContainer = synContainer;
        }
    
        @Override
        public void run() {
            for (int i = 0; i < 100; i++) {
                System.out.println("消费了" + synContainer.pop().id + "只鸡");
            }
        }
    }
    
    class Chicken {
        int id;
    
        public Chicken(int id) {
            this.id = id;
        }
    }
    
    //缓冲区
    class SynContainer {
    
        //需要一个容器大小
        Chicken[] chickens = new Chicken[10];
        //容器计数器
        int count = 0;
    
        //生产者放入产品
        public synchronized void push(Chicken chicken) {
    
            //如果容器满了,需等待消费者消费
            if (count == chickens.length) {
                //通知消费者消费,生产者等待
                try {
                    this.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
    
            //如果没有满,丢入产品
            chickens[count] = chicken;
            count++;
    
            //通知消费者消费
            this.notifyAll();
        }    //消费者消费产品
    
        public synchronized Chicken pop() {
    
            //判断是否能消费
            if (count == 0) {
                //等待生产者生产,消费者等待
                try {
                    this.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
    
            //如果可以消费
            count--;
            Chicken eat = chickens[count];
    
            //吃完了,通知生产者生产
            this.notifyAll();
            return eat;
    
        }
    }
    

    方案二:信号灯法

    //生产者消费者问题 信号灯法 标志位解决
    public class TestPC2 {
        public static void main(String[] args) {
            TV tv = new TV();
            new Player(tv).start();
            new Watcher(tv).start();
        }
    }
    
    //生产者:演员
    class Player extends Thread {
        TV tv;
    
        public Player(TV tv) {
            this.tv = tv;
        }
    
        @Override
        public void run() {
    
            for (int i = 0; i < 20; i++) {
                if (i % 2 == 0) {
                    this.tv.play("快乐大本营播放中");
                } else {
                    this.tv.play("抖音:记录美好生活");
                }
            }
        }
    }
    
    //消费者:观众
    class Watcher extends Thread {
        TV tv;
    
        public Watcher(TV tv) {
            this.tv = tv;
        }
    
        @Override
        public void run() {
            for (int i = 0; i < 20; i++) {
                tv.watch();
            }
        }
    }
    
    //产品:节目
    class TV {
        String voice;
        boolean flag = true;
    
        public synchronized void play(String voice) {
            if (!flag) {
                try {
                    this.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            System.out.println("演员表演了" + voice);
            this.notifyAll();
            this.voice = voice;
            this.flag = !this.flag;
        }
    
        public synchronized void watch() {
            if (flag) {
                try {
                    this.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            System.out.println("观看了:" + voice);
            this.notifyAll();
            this.flag = !this.flag;
        }
    }
    

    线程池

    • 提高响应速度(减少创建新线程的时间)

    • 降低资源消耗(重福利用线程池中的线程,不需要每次创建)

    • 便于线程管理

      • corePoolSize核心线程池大小
      • maximumPoolSize最大线程数
      • keepAliveTime线程没有任务时最多保持多上时间后会终止
    • Jdk5起提供了线程池相关API:ExecutorService和Executors

    • ExecutorService线程池接口,常见子类ThreadPoolExecutor

      • void execute(Runnable command):执行任务/命令,没有返回值,一般用来执行Runnable
      • Future submit(Callable task):执行任务,有返回值,一般用来执行Callable
      • void shutdown():关闭连接池
    • Executors:工具类、线程池的工厂类、用于创建并返回不同类型的线程池

    练习

    import java.util.concurrent.ExecutorService;
    import java.util.concurrent.Executors;
    
    public class TestPool {
        public static void main(String[] args) {
            //创建线程池服务 创建线程池 参数为线程池大小
            ExecutorService service = Executors.newFixedThreadPool(10);
    
            service.execute(new MyThread());
            service.execute(new MyThread());
            service.execute(new MyThread());
            service.execute(new MyThread());
    
            //关闭连接
            service.shutdown();
        }
    }
    
    class MyThread implements Runnable {
        @Override
        public void run() {
            System.out.println(Thread.currentThread().getName());
        }
    }
    

    三种线程启动方式

    练习

    import java.util.concurrent.Callable;
    import java.util.concurrent.ExecutionException;
    import java.util.concurrent.FutureTask;
    
    public class ThreadNew {
        public static void main(String[] args) {
            new MyThread1().start();
    
            new Thread(new MyThread2()).start();
    
            FutureTask<Integer> task = new FutureTask<>(new MyThread3());
            new Thread(task).start();
            //打印返回值
            try {
                Integer integer = task.get();
                System.out.println(integer);
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (ExecutionException e) {
                e.printStackTrace();
            }
        }
    }
    
    class MyThread1 extends Thread{
        @Override
        public void run() {
            System.out.println("继承Thread方式");
        }
    }
    
    class MyThread2 implements Runnable{
        @Override
        public void run() {
            System.out.println("实现Runnable接口方法");
        }
    }
    
    class MyThread3 implements Callable<Integer>{
        @Override
        public Integer call() throws Exception {
            System.out.println("实现Callable接口方式");
            return 100;
        }
    }
    
    击石乃有火,不击元无烟!!
  • 相关阅读:
    行编辑
    二叉树
    多项式乘法
    引用标准库查看当前目录
    双向链表
    哈希表查找
    perl模块
    顺序栈实现
    C#中访问注册表
    查看perl的版本、配置和库信息
  • 原文地址:https://www.cnblogs.com/rain2020/p/13896579.html
Copyright © 2011-2022 走看看