zoukankan      html  css  js  c++  java
  • Solution 「洛谷 P4719」「模板」"动态 DP" & 动态树分治

    \(\mathcal{Description}\)

      Link.

      给定一棵 \(n\) 个结点的带权树,\(m\) 次单点点权修改,求出每次修改后的带权最大独立集。

      \(n,m\le10^5\)

    \(\mathcal{Solution}\)

      不考虑修改,显然 DP。令 \(f(u,0/1)\) 表示选 / 不选结点 \(u\)\(u\) 子树内的带权最大独立集。那么:

    \[\begin{cases}f(u,0)=\sum_v\max\{f(v,0),f(v,1)\}\\f(u,1)=\sum_vf(v,0)+a_u\end{cases} \]

      引入修改,我们自然想用数据结构维护转移。那么就需要进行树链剖分(不一定是重链剖分,这里以复杂度更小的 LCT 为例)。假设 \(u\) 的实儿子是 \(s_u\),我们单独维护 \(s_u\) 的贡献,而把其它儿子一起考虑。设 \(g(u,0/1)\) 表示选 / 不选结点 \(u\)结点 \(u\) 及其虚儿子的子树们的带权最大独立集。有:

    \[\begin{cases}g(u,0)=\sum_{v\not=s_u}\max\{f(v,0),f(v,1)\}\\g(u,1)=\sum_{v\not=s_u}f(v,0)+a_u\end{cases} \]

      用它来表示 \(f\)

    \[\begin{cases}f(u,0)=g(u,0)+\max\{f(s_u,0),f(s_u,1)\}\\f(u,1)=g(u,1)+f(s_u,0)\end{cases} \]

      写成矩乘:

    \[\begin{bmatrix}f(u,0)\\f(u,1)\end{bmatrix}=\begin{bmatrix}g(u,0)&g(u,0)\\g(u,1)&-\infty\end{bmatrix}\begin{bmatrix}f(s_u,0)\\f(s_u,1)\end{bmatrix} \]

      令 \(G_u=\begin{bmatrix}g(u,0)&g(u,0)\\g(u,1)&-\infty\end{bmatrix}\),每次修改,仅会影响 \(\mathcal O(\log n)\) 个链头,也即是 \(\mathcal O(\log n)\) 个虚实交替的位置的 \(G\) 需要修改,就可以维护了。

      考虑到本题的 LCT 并没有“动”,其实就不需要打翻转标记。仅在 access 操作时虚实儿子会发生变化(ch[x][1] 变虚,y 变实),那么直接在当前结点的矩阵除去 y 的贡献,加上 ch[x][1] 的贡献即可。初始时,只初始化 fa[] 的信息,这样所有边都是虚边,\(f(u,0/1)=g(u,0/1)\),做一遍无修改的 DP 把初始的矩阵挂到树上就行啦。

    \(\mathcal{Code}\)

    #include <cstdio>
    #include <cstring>
    #include <assert.h>
    
    const int MAXN = 1e5, NINF = 0xc0c0c0c0;
    int n, m, ecnt, a[MAXN + 5], head[MAXN + 5], f[MAXN + 5][2];
    int fa[MAXN + 5], ch[MAXN + 5][2];
    
    inline int max_ ( const int a, const int b ) { return a < b ? b : a; }
    
    inline char fgc () {
    	static char buf[1 << 17], *p = buf, *q = buf;
    	return p == q && ( q = buf + fread ( p = buf, 1, 1 << 17, stdin ), p == q )
    		? EOF : *p ++;
    }
    
    inline int rint () {
    	int x = 0, f = 1; char s = fgc ();
    	for ( ; s < '0' || '9' < s; s = fgc () ) f = s == '-' ? -f : f;
    	for ( ; '0' <= s && s <= '9'; s = fgc () ) x = x * 10 + ( s ^ '0' );
    	return x * f;
    }
    
    inline void wint ( int x ) {
    	if ( x < 0 ) putchar ( '-' ), x = -x;
    	if ( 9 < x ) wint ( x / 10 );
    	putchar ( x % 10 ^ '0' );
    }
    
    struct Edge { int to, nxt; } graph[MAXN * 2 + 5];
    
    struct Matrix {
    	int n, m, mat[2][2];
    	Matrix () {}
    	Matrix ( const int tn, const int tm ): n ( tn ), m ( tm ), mat {} {}
    	inline int* operator [] ( const int key ) { return mat[key]; }
    	inline Matrix operator * ( Matrix t ) {
    		assert ( m == t.n ); 
    		Matrix ret ( n, t.m ); memset ( ret.mat, 0xc0, sizeof ret.mat ); 
    		for ( int i = 0; i < n; ++ i ) {
    			for ( int k = 0; k < m; ++ k ) {
    				for ( int j = 0; j < t.m; ++ j ) {
    					ret[i][j] = max_ ( ret[i][j], mat[i][k] + t[k][j] );
    				}
    			}
    		}
    		return ret;
    	}
    } G[MAXN + 5], S[MAXN + 5];
    
    inline void link ( const int s, const int t ) {
    	graph[++ ecnt] = { t, head[s] };
    	head[s] = ecnt;
    }
    
    inline bool nroot ( const int x ) { return ch[fa[x]][0] == x || ch[fa[x]][1] == x; }
    
    inline void pushup ( const int x ) {
    	S[x] = G[x];
    	if ( ch[x][0] ) S[x] = S[ch[x][0]] * S[x];
    	if ( ch[x][1] ) S[x] = S[x] * S[ch[x][1]];
    }
    
    inline void rotate ( const int x ) {
    	int y = fa[x], z = fa[y], k = ch[y][1] == x;
    	fa[x] = z; if ( nroot ( y ) ) ch[z][ch[z][1] == y] = x;
    	ch[y][k] = ch[x][k ^ 1]; if ( ch[x][k ^ 1] ) fa[ch[x][k ^ 1]] = y;
    	pushup ( ch[fa[y] = x][k ^ 1] = y ), pushup ( x );
    }
    
    inline void splay ( const int x ) {
    	for ( int y; nroot ( x ); rotate ( x ) ) {
    		if ( nroot ( y = fa[x] ) ) {
    			rotate ( x ^ y ^ ch[y][0] ^ ch[fa[y]][0] ? x : y );
    		}
    	}
    }
    
    inline void access ( int x ) {
    	for ( int y = 0; x; x = fa[y = x] ) {
    		splay ( x );
    		if ( ch[x][1] ) {
    			G[x][0][0] += max_ ( S[ch[x][1]][0][0], S[ch[x][1]][1][0] );
    			G[x][1][0] += S[ch[x][1]][0][0];
    		}
    		if ( y ) {
    			G[x][0][0] -= max_ ( S[y][0][0], S[y][1][0] );
    			G[x][1][0] -= S[y][0][0];
    		}
    		G[x][0][1] = G[x][0][0];
    		ch[x][1] = y, pushup ( x );
    	}
    }
    
    inline void initDP ( const int u, const int fath ) {
    	fa[u] = fath, f[u][1] = a[u], G[u] = Matrix ( 2, 2 );
    	for ( int i = head[u], v; i; i = graph[i].nxt ) {
    		if ( ( v = graph[i].to ) ^ fath ) {
    			initDP ( v, u );
    			f[u][0] += max_ ( f[v][0], f[v][1] );
    			f[u][1] += f[v][0];
    		}
    	}
    	G[u][0][0] = G[u][0][1] = f[u][0];
    	G[u][1][0] = f[u][1], G[u][1][1] = NINF;
    	S[u] = G[u];
    }
    
    int main () {
    	n = rint (), m = rint ();
    	for ( int i = 1; i <= n; ++ i ) a[i] = rint ();
    	for ( int i = 1, u, v; i < n; ++ i ) {
    		u = rint (), v = rint ();
    		link ( u, v ), link ( v, u );
    	}
    	initDP ( 1, 0 );
    	for ( int x, y; m --; ) {
    		x = rint (), y = rint ();
    		access ( x ), splay ( x );
    		G[x][1][0] += y - a[x], a[x] = y;
    		pushup ( x ), splay ( 1 );
    		wint ( max_ ( S[1][0][0], S[1][1][0] ) ), putchar ( '\n' );
    	}
    	return 0;
    }
    
  • 相关阅读:
    9ch
    thymeleaf 的使用(三)--举例使用
    thymeleaf 的使用(二)--基本语法
    thymeleaf 的使用(一)--导入和基本操作
    SpringBoot对静态资源的映射规则
    第一个Spring Boot项目
    HTML文本换行问题
    判断for(var i=0;i<=3;i++){ setTimeout(function() { console.log(i) }, 10) }
    js的执行机制——宏任务和微任务
    v-if 和 v-show 的区别
  • 原文地址:https://www.cnblogs.com/rainybunny/p/13376926.html
Copyright © 2011-2022 走看看