zoukankan      html  css  js  c++  java
  • Solution -「NOI 2012」「洛谷 P2050」美食节

    (mathcal{Description})

      Link.

      美食节提供 (n) 种菜品,第 (i) 种的需求量是 (p_i),菜品由 (m) 个厨师负责制作,第 (j) 个厨师做第 (i) 道菜的用时是 (t_{ij})。安排做菜方案,使得 (sum p_i) 个需求等待的总时间最小。

      (nle40)(mle100)(sum p_ile800)

    (mathcal{Solution})

      对于每个厨师,他做他所负责的倒数第 (i) 道菜的额外贡献系数为 (i),即其对答案贡献 (i imes) 做该道菜的用时。所以想到已时间为层建分层图,菜品令为 (d_1,d_2,cdots,d_n),第 (i) 个厨师拆为 (i_1,i_2,cdots,i_n),表示做倒数第 (1) 道菜的 (i) 厨师,做倒数第二道菜的 (i) 厨师,……,做倒数第 (n) 道菜的 (i) 厨师。每个 (d_k)(i_j) 连一条费用为 (jt_{ki}) 的边,其余边自行脑补,跑最小费用最大流即可。

      然而 (mathcal O(operatorname{Dinic}(nm,n^2m))) 并跑不过,需要用动态加点的优化方法:当某个厨师用到了 (i_j) 这一虚点时,再加入 (i_{j+1}) 及其连边。

    (mathcal{Code})

    /* Clearink */
    
    #include <queue>
    #include <cstdio>
    #include <cassert>
    #include <algorithm>
    
    #define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
    #define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i )
    
    typedef std::pair<int, int> PII;
    
    inline int rint () {
    	int x = 0; char s = getchar ();
    	for ( ; s < '0' || '9' < s; s = getchar () );
    	for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
    	return x;
    }
    
    inline int imin ( const int a, const int b ) { return a < b ? a : b; }
    
    const int MAXN = 40, MAXM = 100, MAXND = 1e4, INF = 0x3f3f3f3f;
    int n, m, cook[MAXN + 5][MAXM + 5], bel[MAXND + 5], stp[MAXM + 5], vis[MAXND + 5];
    
    struct MaxFlowCostGraph {
    	static const int MAXND = ::MAXND, MAXEG = 2e6;
    	int ecnt, head[MAXND + 5], S, T, bound, curh[MAXND + 5], d[MAXND + 5];
    	bool inq[MAXND + 5];
    	struct Edge { int to, flw, cst, nxt; } graph[MAXEG * 2 + 5];
    
    	MaxFlowCostGraph (): ecnt ( 1 ) {}
    
    	inline void link ( const int s, const int t, const int f, const int w ) {
    		graph[++ecnt] = { t, f, w, head[s] };
    		head[s] = ecnt;
    	}
    
    	inline Edge& operator [] ( const int k ) { return graph[k]; }
    
    	inline void operator () ( const int s, const int t, const int f, const int w ) {
    		#ifdef RYBY
    			printf ( "%d %d ", s, t );
    			if ( f == INF ) printf ( "INF " );
    			else printf ( "%d ", f );
    			printf ( "%d
    ", w );
    		#endif
    		link ( s, t, f, w ), link ( t, s, 0, -w );
    	}
    
    	inline bool spfa () {
    		static std::queue<int> que;
    		for ( int i = 0; i <= bound; ++i ) d[i] = -1, inq[i] = false;
    		d[S] = 0, inq[S] = true, que.push ( S );
    		while ( !que.empty () ) {
    			int u = que.front (); que.pop ();
    			inq[u] = false;
    			for ( int i = head[u], v; i; i = graph[i].nxt ) {
    				if ( graph[i].flw
    				&& ( !~d[v = graph[i].to] || d[v] > d[u] + graph[i].cst ) ) {
    					d[v] = d[u] + graph[i].cst;
    					if ( !inq[v] ) que.push ( v ), inq[v] = true;
    				}
    			}
    		}
    		return ~d[T];
    	}
    
    	inline PII dfs ( const int u, const int iflw ) {
    		if ( u == T ) return { iflw, 0 };
    		inq[u] = true; PII ret ( 0, 0 );
    		for ( int& i = curh[u], v; i; i = graph[i].nxt ) {
    			if ( graph[i].flw && !inq[v = graph[i].to]
    			&& d[v] == d[u] + graph[i].cst ) {
    				PII oflw ( dfs ( v, imin ( iflw - ret.first, graph[i].flw ) ) );
    				graph[i].flw -= oflw.first, graph[i ^ 1].flw += oflw.first;
    				ret.first += oflw.first;
    				ret.second += graph[i].cst * oflw.first + oflw.second;
    				if ( ret.first == iflw ) break;
    			}
    		}
    		if ( !ret.first ) d[u] = -1;
    		return inq[u] = false, ret;
    	}
    } graph;
    
    int main () {
    	n = rint (), m = rint ();
    	int S = 0, T = graph.bound = 1e4, cnt = n;
    	rep ( i, 1, n ) graph ( S, i, rint (), 0 );
    	rep ( i, 1, n ) rep ( j, 1, m ) cook[i][j] = rint ();
    	rep ( i, 1, m ) {
    		graph ( ++cnt, T, 1, 0 ), bel[cnt] = i, stp[i] = 1;
    		rep ( j, 1, n ) graph ( j, cnt, 1, cook[j][i] );
    	}
    	graph.S = S, graph.T = T;
    	int ans = 0;
    	while ( graph.spfa () ) {
    		for ( int i = 0; i <= graph.bound; ++i ) {
    			graph.inq[i] = false, graph.curh[i] = graph.head[i];
    		}
    		ans += graph.dfs ( S, INF ).second;
    		for ( int i = graph.head[T], v, cid; i; i = graph[i].nxt ) {
    			if ( graph[i].flw && !vis[v = graph[i].to] ) {
    				vis[v] = true, cid = bel[v];
    				graph ( ++cnt, T, 1, 0 ), ++stp[bel[cnt] = cid];
    				rep ( j, 1, n ) graph ( j, cnt, 1, stp[cid] * cook[j][cid] );
    			}
    		}
    	}
    	printf ( "%d
    ", ans );
    	return 0;
    }
    
    
  • 相关阅读:
    整数子数组求最大和
    四则运算实现
    四则运算
    2015年大二下学期读书计划
    java变量和数据类型
    jdk的安装和java的入门概念
    数据库的设计
    多表查询
    数据约束和外键
    表数据的简单查询语句
  • 原文地址:https://www.cnblogs.com/rainybunny/p/14254952.html
Copyright © 2011-2022 走看看