dp,f[i][j][k]表示用i个不同的素数相加等于k的方法数,且这i个素数只能在前j个数字中选。
f[i][j][k] = f[i][j - 1][k] + f[i - 1][j - 1][k - w[j]];(w[j]为第j个素数的值)
View Code
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> using namespace std; #define maxn 1200 #define maxr 20 bool is[maxn]; int prm[maxn]; int n, r, tot; int f[maxr][maxn][maxn]; int w[maxn]; int getprm(int n) { int i, j, k = 0; int s, e = (int) (sqrt(0.0 + n) + 1); memset(is, 1, sizeof(is)); prm[k++] = 2; is[0] = is[1] = 0; for (i = 4; i < n; i += 2) is[i] = 0; for (i = 3; i < e; i += 2) if (is[i]) { prm[k++] = i; for (s = i * 2, j = i * i; j < n; j += s) is[j] = 0; } for (; i < n; i += 2) if (is[i]) prm[k++] = i; return k; } int work() { int i = 0; while (i < tot && prm[i] <= n) i++; int m = i; memset(w, 0, sizeof(w)); for (int i = 0; i < m; i++) w[i + 1] = prm[i]; for (int i = 0; i <= m; i++) f[0][i][0] = 1; for (int i = 1; i <= r; i++) { for (int j = 1; j <= m; j++) for (int k = 0; k <= n; k++) { f[i][j][k] = f[i][j - 1][k]; if (k - w[j] >= 0) f[i][j][k] += f[i - 1][j - 1][k - w[j]]; // if (f[i][j][k]) // printf("%d %d %d %d\n", i, w[j], k, f[i][j][k]); } } return f[r][m][n]; } int main() { //freopen("t.txt", "r", stdin); tot = getprm(1120); while (scanf("%d%d", &n, &r), n | r) printf("%d\n", work()); return 0; }