zoukankan      html  css  js  c++  java
  • BZOJ1925:[SDOI2010]地精部落(DP)

    Description

    传说很久以前,大地上居住着一种神秘的生物:地精。 地精喜欢住在连绵不绝的山脉中。具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N 之间的正 整数。 如果一段山脉比所有与它相邻的山脉都高,则这段山脉是一个山峰。位于边 缘的山脉只有一段相邻的山脉,其他都有两段(即左边和右边)。 类似地,如果一段山脉比所有它相邻的山脉都低,则这段山脉是一个山谷。 地精们有一个共同的爱好——饮酒,酒馆可以设立在山谷之中。地精的酒馆 不论白天黑夜总是人声鼎沸,地精美酒的香味可以飘到方圆数里的地方。 地精还是一种非常警觉的生物,他们在每座山峰上都可以设立瞭望台,并轮 流担当瞭望工作,以确保在第一时间得知外敌的入侵。 地精们希望这N 段山脉每段都可以修建瞭望台或酒馆的其中之一,只有满足 这个条件的整座山脉才可能有地精居住。 现在你希望知道,长度为N 的可能有地精居住的山脉有多少种。两座山脉A 和B不同当且仅当存在一个 i,使得 Ai≠Bi。由于这个数目可能很大,你只对它 除以P的余数感兴趣。

    Input

    仅含一行,两个正整数 N, P。

    Output

    仅含一行,一个非负整数,表示你所求的答案对P取余 之后的结果。

    Sample Input

    4 7

    Sample Output

    3

    HINT



    对于 20%的数据,满足 N≤10;
    对于 40%的数据,满足 N≤18;
    对于 70%的数据,满足 N≤550;
    对于 100%的数据,满足 3≤N≤4200,P≤109

    Solution

    首先可以发现这个序列的特点就是折来折去的,这玩意儿叫波动数列,它有一个性质叫对称性。

    假如$n=5$的一个波动数列为$5,2,4,1,3$,那么他对称的序列就是$1,4,2,5,3$,可以发现原序列的对称数列也是一个波动数列。

    那么我们设$f[i][j]$表示前$i$个数构成的排列第一个数的取值范围为$[1,j]$且第一个数为山峰的方案数。

    首先很显然,若第一个数为$[1,j-1]$则$f[i][j]+=f[i][j-1]$。

    若第一个数为$j$,剩下$i-1$个数离散一下就是一个大小为$i-1$的数集,且这个数集开头必须选$[1,j-1]$,但是$f$数组记录的是第一个数为山峰的值,这个时候就可以根据上面提到的对称性转化成$f[i][j]+=f[i-1][i-j]$

    Code

     1 #include<cstdio>
     2 #define N (4209)
     3 int n,p,f[2][N];
     4 int main()
     5 {
     6     scanf("%d%d",&n,&p);
     7     f[1][1]=1;
     8     for (int i=2; i<=n; ++i)
     9         for (int j=1; j<=i; ++j)
    10             f[i&1][j]=(f[i&1][j-1]+f[(i-1)&1][i-j])%p;
    11     printf("%d
    ",f[n&1][n]*2%p);
    12 }
  • 相关阅读:
    c语言 ,回调函数[个人理解]
    MFC、C++ 、Windows编程高手
    c++, 虚基派生 : 共同基类产生的二义性的解决办法
    c++,命名空间(namespace)
    c++,纯虚函数与抽象类
    c++ ,protected 和 private修饰的构造函数
    c++ 虚析构函数[避免内存泄漏]
    c++,虚函数
    c++,类的组合
    GPU与CPU的区别
  • 原文地址:https://www.cnblogs.com/refun/p/10165058.html
Copyright © 2011-2022 走看看