zoukankan      html  css  js  c++  java
  • Caffe任务池GPU模型图像识别

    一开始我在网上找demo没有找到,在群里寻求帮助也没有得到结果,索性将网上的易语言模块反编译之后,提取出对应的dll以及代码,然后对照官方的c++代码,写出了下面的c#版本

    /***
     * @pName caffe_task_pool_demo
     * @name CC
     * @user wadezh
     * @date 2018/6/16
     * @desc
     */
    using System;
    using System.Collections;
    using System.Collections.Generic;
    using System.IO;
    using System.Linq;
    using System.Runtime.InteropServices;
    using System.Text;
    using System.Threading.Tasks;
    
    namespace caffe_task_pool_demo
    {
        class CC
        {
    
            public static int taskPool { get; set; } = 0;
            public static string prototxt { get; set; }
            public static ArrayList map { get; set; }
            public static int timeStep { get; set; }
            public static int alphabetSize { get; set; }
    
            /*Caffe_API TaskPool* __stdcall createTaskPoolByData(
    
            const void* prototxt_data,
    
            int prototxt_data_length,
    
            const void* caffemodel_data,
    
            int caffemodel_data_length,
    
            float scale_raw = 1,
    
            const char* mean_file = 0,
    
            int num_means = 0,
    
            float* means = 0,
    
            int gpu_id = -1,
    
            int batch_size = 3);*/
    
            [DllImport("classification_dll.dll", EntryPoint = "createTaskPoolByData", CallingConvention = CallingConvention.StdCall)] 
            public static extern int CreateTaskPoolByData(byte[] prototxt_data,
            int prototxt_data_length,
            byte[] caffemodel_data,
            int caffemodel_data_length,
            float scale_raw = 1,
            string mean_file = "",
            int num_means = 0,
            float means = 0,
            int gpu_id = -1,
            int cach_size = 1);
    
    
            /*Caffe_API BlobData* __stdcall forwardByTaskPool(TaskPool* pool, const void* img, int len, const char* blob_name);*/
    
            [DllImport("classification_dll.dll", EntryPoint = "forwardByTaskPool", CallingConvention = CallingConvention.StdCall)]
            public static extern int ForwardByTaskPool(int poolHandle, byte[] image, int imageLen, string printBlobName);
    
            /*Caffe_API int __stdcall getBlobLength(BlobData* feature);*/
            [DllImport("classification_dll.dll", EntryPoint = "getBlobLength", CallingConvention = CallingConvention.StdCall)]
            public static extern int GetBlobLength(int feature);
    
            /*Caffe_API void __stdcall cpyBlobData(void* buffer, BlobData* feature);*/
            [DllImport("classification_dll.dll", EntryPoint = "cpyBlobData", CallingConvention = CallingConvention.StdCall)]
            public static extern int CpyBlobData(float[] buffer, int feature);
    
            /*Caffe_API void  __stdcall releaseBlobData(BlobData* ptr);*/
            [DllImport("classification_dll.dll", EntryPoint = "releaseBlobData", CallingConvention = CallingConvention.StdCall)]
            public static extern int ReleaseBlobData(int ptr);
    
            private static int Argmax(float[] arr, int begin, int end, ref float acc)
            {
                acc = -9999;
                int mxInd = 0;
                for (int i = begin; i < end; i++)
                {
                    if (acc < arr[i])
                    {
                        mxInd = i;
                        acc = arr[i];
                    }
                }
                return mxInd - begin;
            }
    
    
            public static bool InitCaptcha(string prototxtPath, string modelPath, string mapPath, int gpuId, int batchSize) {
                byte[] deploy = Util.GetFileStream(prototxtPath);
                byte[] model = Util.GetFileStream(modelPath);
                CC.taskPool = CC.CreateTaskPoolByData(deploy, deploy.Length, model, model.Length, 1F, "", 0, 0F, gpuId, batchSize);
                CC.prototxt = System.Text.Encoding.Default.GetString(deploy);
                string[] mapFile = Util.LoadStringFromFile(mapPath).Trim().Split("
    ".ToArray());
                CC.map = new ArrayList();
                for (int i = 0; i < mapFile.Length; i++)
                {
                    if (mapFile[i].Length > 0)
                    {
                        CC.map.Add(mapFile[i]);
                    }
                }
                string time_step = Util.GetMiddleString(CC.prototxt, "time_step:", "
    ");
                string layer = Util.GetMiddleString(CC.prototxt, "inner_product_param {", "{");
                string alphabet_size = Util.GetMiddleString(layer, "num_output:", "
    ");
                CC.timeStep = int.Parse(time_step);
                CC.alphabetSize = int.Parse(alphabet_size);
                return CC.taskPool != 0;
            }
    
    
            public static string GetCaptcha(byte[] image) {
                // Get the prediction result handle
                int poolHandle = CC.ForwardByTaskPool(taskPool, image, image.Length, "premuted_fc");
    
                // Get the tensor handle
                float[] permute_fc = new float[CC.GetBlobLength(poolHandle)];
    
                // Copy the tensor data
                CpyBlobData(permute_fc, poolHandle);
                string code = string.Empty;
    
                if (permute_fc.Length > 0)
                {
                    int o = 0;
                    float acc = 0F;
                    int emptyLabel = alphabetSize - 1;
                    int prev = emptyLabel;
                    for (int i = 1; i < timeStep; i++)
                    {
                        o = Argmax(permute_fc, (i - 1) * alphabetSize + 1, i * alphabetSize, ref acc);
                        if (o != emptyLabel && prev != o) code += map[o + 1];
                        prev = o;
                    }
                    code = code.Replace("_", "").Trim();
                }
    
                ReleaseBlobData(poolHandle);
                return code;
            }
    
            protected class Util
            {
    
    
    
                public static byte[] GetFileStream(string path)
                {
                    FileStream fs = new FileStream(path, FileMode.Open);
                    long size = fs.Length;
                    byte[] array = new byte[size];
                    fs.Read(array, 0, array.Length);
                    fs.Close();
                    return array;
                }
    
    
                public static string LoadStringFromFile(string fileName)
                {
                    string content = string.Empty;
    
                    StreamReader sr = null;
                    try
                    {
                        sr = new StreamReader(fileName, System.Text.Encoding.UTF8);
                        content = sr.ReadToEnd();
                    }
                    catch (Exception ex)
                    {
                        throw ex;
                    }
    
                    if (sr != null)
                        sr.Close();
    
                    return content;
                }
    
    
    
                public static string GetMiddleString(string SumString, string LeftString, string RightString)
                {
                    if (string.IsNullOrEmpty(SumString)) return "";
                    if (string.IsNullOrEmpty(LeftString)) return "";
                    if (string.IsNullOrEmpty(RightString)) return "";
    
                    int LeftIndex = SumString.IndexOf(LeftString);
                    if (LeftIndex == -1) return "";
                    LeftIndex = LeftIndex + LeftString.Length;
                    int RightIndex = SumString.IndexOf(RightString, LeftIndex);
                    if (RightIndex == -1) return "";
                    return SumString.Substring(LeftIndex, RightIndex - LeftIndex);
                }
    
            }
    
        }
    
    }

    项目中我已经将caffemodel以及prototxt等文件都打包,可以直接运行

    我封装的这个CC类只支持GPU任务池识别,识别速度比较快

    链接:https://pan.baidu.com/s/17tSh3IE3Xv_YlJhSOhKddg 密码:ct5z

  • 相关阅读:
    HDUoj(1002)A + B Problem II
    HIT Summer 20180731
    Windows10下python3.5对维基百科语料用word2vec进行训练寻找同义词相似度
    关键词抽取
    win10+python遇到:Using TensorFlow backend.错误
    Windows下Python3.5+numpy+keras+tesorflow的环境配置
    常用的一些序列号
    Umbraco扩展开发
    Umbraco Content属性
    Windows查看端口占用
  • 原文地址:https://www.cnblogs.com/renhongwei/p/9192515.html
Copyright © 2011-2022 走看看