首先说明下,这里主要内容为整理总结网络搜索的零散信息。
写在最前面,mysql事务是在Innodb引擎中得以实现的,如果这点不了解的话,请自行了解。
事务直接数据的可见性通过MVCC(多版本并发控制)实现。对同一记录的修改会保存历史版本的数据,通过一系列的逻辑看判断当前事务应该获取的是那个版本的数据,也就是通常意义上的可见性。
Innodb会为每行记录添加三个隐形字段:6字节的事务ID(DB_TRX_ID)、7字节的回滚指针(DB_ROLL_PTR)、隐藏的ID。
MVCC 在mysql 中的实现依赖的是 undo log 与 read view。
a.undo log: undo log中记录的是数据表记录行的多个版本,也就是事务执行过程中的回滚段,其实就是MVCC 中的一行原始数据的多个版本镜像数据。
b.read view: 主要用来判断当前版本数据的可见性。
下面看下一条记录的更新过程:
1.初始数据行
F1~F6是某行列的名字,1~6是其对应的数据。后面三个隐含字段分别对应该行的事务号和回滚指针,假如这条数据是刚INSERT的,可以认为ID为1,其他两个字段为空。
2.事务1更改该行的各字段的值
当事务1更改该行的值时,会进行如下操作:
用排他锁锁定该行
记录redo log
把该行修改前的值Copy到undo log,即上图中下面的行
修改当前行的值,填写事务编号,使回滚指针指向undo log中的修改前的行
3.事务2修改该行的值
下面讲下调用select时mysql到底做了什么:
首先,看下read_view结构:
struct read_view_t{ // 由于是逆序排列,所以low/up有所颠倒 // 能看到当前行版本的高水位标识,>= low_limit_id皆不能看见,low_limit_id取值为max_trx_id(即尚未被分配的trx_id) trx_id_t low_limit_id; // 能看到当前行版本的低水位标识,< up_limit_id皆能看见,up_limit_id取值为当前活跃最小事务id trx_id_t up_limit_id; // 当前活跃事务(即未提交的事务)的数量 ulint n_trx_ids; // 以逆序排列的当前获取活跃事务id的数组 // 其up_limit_id<tx_id<low_limit_id trx_id_t* trx_ids; // 创建当前视图的事务id trx_id_t creator_trx_id; // 事务系统中的一致性视图链表 UT_LIST_NODE_T(read_view_t) view_list; };
read_view构建逻辑:
在mysql的trx_sys中,一直维护着一个全局的活跃的读写事务id(trx_sys->descriptors
),id按照从小到大排序,表示在某个时间点,数据库中所有的活跃(已经开始但还没提交)的读写(必须是读写事务,只读事务不包含在内)事务。当需要一个一致性读的时候(即创建新的readview时),会把全局读写事务id拷贝一份到readview本地(read_view_t->trx_ids),当做当前事务的快照。read_view_t->up_limit_id是read_view_t->trx_ids这数组中最小的值,read_view_t->low_limit_id是创建readview时的max_trx_id(即尚未被分配的trx_id,这样在>=判断时就可以将读事务开启后提交的事务包含进来),即一定大于read_view_t->trx_ids中的最大值。当查询出一条记录后(记录上有一个trx_id,表示这条记录最后被修改时的事务id),可见性判断的逻辑如下(read_view_sees_trx_id):
1.如果记录上的trx_id小于read_view_t->up_limit_id,则说明这条记录的最后修改在readview创建之前,因此这条记录可以被看见。
2.如果记录上的trx_id大于等于read_view_t->low_limit_id,则说明这条记录的最后修改在readview创建之后,因此这条记录肯定不可以被看见。
3.如果记录上的trx_id在up_limit_id和low_limit_id之间,且trx_id在read_view_t->trx_ids之中,则表示这条记录的最后修改是在readview创建之时,被另外一个活跃事务所修改,所以这条记录也不可以被看见。如果trx_id不在read_view_t->trx_ids之中,则表示这条记录的最后修改在readview创建之后被提交,所以可以看到。
注意当隔离级别设置为READ UNCOMMITTED时,不会去构建老版本。
判断行记录可见行源码如下:
/*********************************************************************//** Checks if a read view sees the specified transaction. @return true if sees */ UNIV_INLINE bool read_view_sees_trx_id( /*==================*/ const read_view_t* view, /*!< in: read view */ trx_id_t trx_id) /*!< in: trx id */ { if (trx_id < view->up_limit_id) { return(true); } else if (trx_id >= view->low_limit_id) { return(false); } else { ulint lower = 0; ulint upper = view->n_trx_ids - 1; ut_a(view->n_trx_ids > 0); do { ulint mid = (lower + upper) >> 1; trx_id_t mid_id = view->trx_ids[mid]; if (mid_id == trx_id) { return(FALSE); } else if (mid_id < trx_id) { if (mid > 0) { upper = mid - 1; } else { break; } } else { lower = mid + 1; } } while (lower <= upper); } return(true); }
4.基于上述判断,如果记录不可见,则尝试使用undo去构建老的版本(row_vers_build_for_consistent_read
),直到找到可以被看见的记录或者解析完所有的undo,代码如下:
dberr_t row_vers_build_for_consistent_read(...) { ...... for(;;){ err = trx_undo_prev_version_build(rec, mtr,version,index,*offsets, heap,&prev_version); ...... trx_id = row_get_rec_trx_id(prev_version, index, *offsets); // 如果当前row版本符合一致性视图,则返回 if (read_view_sees_trx_id(view, trx_id)) { ...... break; } // 如果当前row版本不符合,则继续回溯上一个版本(回到for循环的地方) version = prev_version; } ...... }
可见性分析如上已经差不多了,那么,不同隔离级别是怎么利用readview达到效果的呢?
针对RR隔离级别,在第一次创建readview(第一次调用select(不加锁))后,这个readview就会一直持续到事务结束,也就是说在事务执行过程中,数据的可见性不会变,所以在事务内部不会出现不一致的情况。针对RC隔离级别,事务中的每个查询语句都单独构建一个readview,所以如果两个查询之间有事务提交了,两个查询读出来的结果就不一样。从这里可以看出,在InnoDB中,RR隔离级别的效率是比RC隔离级别的高。此外,针对RU隔离级别,由于不会去检查可见性,所以在一条SQL中也会读到不一致的数据。针对串行化隔离级别,InnoDB是通过锁机制来实现的,而不是通过多版本控制的机制,所以性能很差。
由下面代码可知,只有单纯的select才创建readview,select for update会加锁所以不会创建readview。
// 只有非锁模式的select才创建一致性视图 else if (prebuilt->select_lock_type == LOCK_NONE) { // 创建一致性视图 trx_assign_read_view(trx); prebuilt->sql_stat_start = FALSE; }
也可参考下面描述:
参考资料:
https://my.oschina.net/alchemystar/blog/1927425
http://mysql.taobao.org/monthly/2017/12/01/