zoukankan      html  css  js  c++  java
  • luogu4770 [NOI2018]你的名字 后缀自动机 + 线段树合并


    其实很水的一道题吧....

    题意是:每次给定一个串(T)以及(l, r),询问有多少个字符串(s)满足,(s)(T)的子串,但不是(S[l .. r])的子串


    统计(T)本质不同的串,建个后缀自动机

    然后自然的可以想到,对于每个(T)的子串,它对应了一个(right)集合

    那么,它应该会被这个(right)集合所限制

    考虑对于每个(i),求出最小的(l)使得(T[l .. i])存在于(S[l..r])

    这个可以套个线段树转移

    然后就没了.....


    如果不需要统计(T)本质不同的串,又怎么做呢?

    统计的时候乘上(right)集合大小就行


    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    
    #define ri register int
    #define ll long long
    #define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
    #define drep(io, ed, st) for(ri io = ed; io >= st; io --)
    
    #define gc getchar
    inline int read() {
        int p = 0, w = 1; char c =  gc();
        while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
        while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
        return p * w;
    }
    
    const int sid = 1005000;
    const int eid = 30000000 + 5;
    
    struct SAM {
        
        int id, fa[sid], mx[sid];
        int go[sid][26], mc[sid];
        
        inline int newnode() {
            ++ id;
            fa[id] = mx[id] = mc[id] = 0;
            memset(go[id], 0, sizeof(go[id]));
            return id;
        }
        
        inline void init() {
            id = 0;
            newnode();
        }
        
        inline int extend(int lst, int c, int pos) {
            int np = newnode(), p = lst;
            mx[np] = mx[p] + 1; mc[np] = pos;
            for( ; p && !go[p][c]; p = fa[p]) 
                go[p][c] = np;
            if(!p) fa[np] = 1;
            else {
                int q = go[p][c];
                if(mx[p] + 1 == mx[q]) fa[np] = q;
                else {
                    int nq = newnode(); mx[nq] = mx[p] + 1;
                    fa[nq] = fa[q]; fa[np] = fa[q] = nq;
                    memcpy(go[nq], go[q], sizeof(go[q]));
                    for( ; p && go[p][c] == q; p = fa[p]) 
                        go[p][c] = nq;
                }
            }
            return np;
        }
        
    } S, T;
    
    int q, n, m, seg;
    char s[sid], t[sid];
    int nc[sid], ip[sid], w[sid], val[sid];
    int rt[sid], ls[eid], rs[eid];
    
    inline int merge(int x, int y) {
        if(!x || !y) return x + y;
        int o = ++ seg;
        ls[o] = merge(ls[x], ls[y]);
        rs[o] = merge(rs[x], rs[y]);
        return o;
    }
    
    inline void ins(int &o, int l, int r, int p) {
        o = ++ seg;
        if(l == r) return;
        int mid = (l + r) >> 1;
        if(p <= mid) ins(ls[o], l, mid, p);
        else ins(rs[o], mid + 1, r, p);
    }
    
    inline bool qry(int o, int l, int r, int ml, int mr) {
        if(ml > r || mr < l || ml > mr || !o) return 0;
        if(ml <= l && mr >= r) return 1;
        int mid = (l + r) >> 1;
        if(qry(ls[o], l, mid, ml, mr)) return 1;
        else return qry(rs[o], mid + 1, r, ml, mr);
    }
    
    inline void init() {
        S.init();
        int lst = 1;
        rep(i, 1, n) lst = S.extend(lst, s[i] - 'a', i);
        int id = S.id;
        rep(i, 1, id) nc[S.mx[i]] ++;
        rep(i, 1, n) nc[i] += nc[i - 1];
        rep(i, 1, id) ip[nc[S.mx[i]] --] = i;
        rep(i, 1, id) 
            if(S.mc[i]) 
                ins(rt[i], 1, n, S.mc[i]);
        drep(i, id, 1) {
            int o = ip[i], f = S.fa[o];
            rt[f] = merge(rt[f], rt[o]);
        }
    }
    
    void Match(int l, int r) {
        int o = 1, nl = 0;
        rep(i, 1, m) {
            int c = t[i] - 'a';
            while(1) 
            {
                int nxt = S.go[o][c], f = S.fa[o];
                if(nxt && qry(rt[nxt], 1, n, l + nl, r)) 
                {
                    nl ++; o = nxt;
                    break;
                }
                if(!nl) break; nl --;
                if(nl == S.mx[f]) o = f;
            }
            w[i] = nl;
        }
    }
    
    int main() {
        scanf("%s", s + 1);
        n = strlen(s + 1);
        init(); q = read();
        rep(i, 1, q) {
            
            scanf("%s", t + 1);
            m = strlen(t + 1);
            
            T.init();
            int lst = 1;
            rep(j, 1, m) lst = T.extend(lst, t[j] - 'a', j);
            
            int l = read(), r = read();
            Match(l, r);
                
            int id = T.id;
            rep(i, 1, id) nc[i] = val[i] = 0;
            rep(i, 1, id) nc[T.mx[i]] ++;
            rep(i, 1, id) nc[i] += nc[i - 1];
            rep(i, 1, id) ip[nc[T.mx[i]] --] = i;
            drep(i, id, 1) {
                int o = ip[i], f = T.fa[o];
                if(T.mc[o]) val[o] = w[T.mc[o]];
                val[f] = max(val[f], val[o]);
            }
            
            ll ans = 0;
            rep(i, 1, id) ans += max(T.mx[i] - max(T.mx[T.fa[i]], val[i]), 0);
            printf("%lld
    ", ans);
        }
        return 0;
    }
    
  • 相关阅读:
    swift
    swift
    ios
    Swift
    swift
    swift
    /var/log/cron
    Django 数据传递
    HTML 属性
    HTML 元素
  • 原文地址:https://www.cnblogs.com/reverymoon/p/10029355.html
Copyright © 2011-2022 走看看