其实很水的一道题吧....
题意是:每次给定一个串(T)以及(l, r),询问有多少个字符串(s)满足,(s)是(T)的子串,但不是(S[l .. r])的子串
统计(T)本质不同的串,建个后缀自动机
然后自然的可以想到,对于每个(T)的子串,它对应了一个(right)集合
那么,它应该会被这个(right)集合所限制
考虑对于每个(i),求出最小的(l)使得(T[l .. i])存在于(S[l..r])中
这个可以套个线段树转移
然后就没了.....
如果不需要统计(T)本质不同的串,又怎么做呢?
统计的时候乘上(right)集合大小就行
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ri register int
#define ll long long
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
#define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
}
const int sid = 1005000;
const int eid = 30000000 + 5;
struct SAM {
int id, fa[sid], mx[sid];
int go[sid][26], mc[sid];
inline int newnode() {
++ id;
fa[id] = mx[id] = mc[id] = 0;
memset(go[id], 0, sizeof(go[id]));
return id;
}
inline void init() {
id = 0;
newnode();
}
inline int extend(int lst, int c, int pos) {
int np = newnode(), p = lst;
mx[np] = mx[p] + 1; mc[np] = pos;
for( ; p && !go[p][c]; p = fa[p])
go[p][c] = np;
if(!p) fa[np] = 1;
else {
int q = go[p][c];
if(mx[p] + 1 == mx[q]) fa[np] = q;
else {
int nq = newnode(); mx[nq] = mx[p] + 1;
fa[nq] = fa[q]; fa[np] = fa[q] = nq;
memcpy(go[nq], go[q], sizeof(go[q]));
for( ; p && go[p][c] == q; p = fa[p])
go[p][c] = nq;
}
}
return np;
}
} S, T;
int q, n, m, seg;
char s[sid], t[sid];
int nc[sid], ip[sid], w[sid], val[sid];
int rt[sid], ls[eid], rs[eid];
inline int merge(int x, int y) {
if(!x || !y) return x + y;
int o = ++ seg;
ls[o] = merge(ls[x], ls[y]);
rs[o] = merge(rs[x], rs[y]);
return o;
}
inline void ins(int &o, int l, int r, int p) {
o = ++ seg;
if(l == r) return;
int mid = (l + r) >> 1;
if(p <= mid) ins(ls[o], l, mid, p);
else ins(rs[o], mid + 1, r, p);
}
inline bool qry(int o, int l, int r, int ml, int mr) {
if(ml > r || mr < l || ml > mr || !o) return 0;
if(ml <= l && mr >= r) return 1;
int mid = (l + r) >> 1;
if(qry(ls[o], l, mid, ml, mr)) return 1;
else return qry(rs[o], mid + 1, r, ml, mr);
}
inline void init() {
S.init();
int lst = 1;
rep(i, 1, n) lst = S.extend(lst, s[i] - 'a', i);
int id = S.id;
rep(i, 1, id) nc[S.mx[i]] ++;
rep(i, 1, n) nc[i] += nc[i - 1];
rep(i, 1, id) ip[nc[S.mx[i]] --] = i;
rep(i, 1, id)
if(S.mc[i])
ins(rt[i], 1, n, S.mc[i]);
drep(i, id, 1) {
int o = ip[i], f = S.fa[o];
rt[f] = merge(rt[f], rt[o]);
}
}
void Match(int l, int r) {
int o = 1, nl = 0;
rep(i, 1, m) {
int c = t[i] - 'a';
while(1)
{
int nxt = S.go[o][c], f = S.fa[o];
if(nxt && qry(rt[nxt], 1, n, l + nl, r))
{
nl ++; o = nxt;
break;
}
if(!nl) break; nl --;
if(nl == S.mx[f]) o = f;
}
w[i] = nl;
}
}
int main() {
scanf("%s", s + 1);
n = strlen(s + 1);
init(); q = read();
rep(i, 1, q) {
scanf("%s", t + 1);
m = strlen(t + 1);
T.init();
int lst = 1;
rep(j, 1, m) lst = T.extend(lst, t[j] - 'a', j);
int l = read(), r = read();
Match(l, r);
int id = T.id;
rep(i, 1, id) nc[i] = val[i] = 0;
rep(i, 1, id) nc[T.mx[i]] ++;
rep(i, 1, id) nc[i] += nc[i - 1];
rep(i, 1, id) ip[nc[T.mx[i]] --] = i;
drep(i, id, 1) {
int o = ip[i], f = T.fa[o];
if(T.mc[o]) val[o] = w[T.mc[o]];
val[f] = max(val[f], val[o]);
}
ll ans = 0;
rep(i, 1, id) ans += max(T.mx[i] - max(T.mx[T.fa[i]], val[i]), 0);
printf("%lld
", ans);
}
return 0;
}