zoukankan      html  css  js  c++  java
  • 《University Calculus》-chaper12-多元函数-拉格朗日乘数法

      求解条件极值的方法:拉格朗日乘数法

      基于对多元函数极值方法的了解,再具体的问题中我们发现这样一个问题,在求解f(x,y,z)的极值的时候,我们需要极值点落在g(x,y,z)上这种对极值点有约束条件,通过直接代换消元的方法似乎会出现一些问题。

      比如这个例题。

     

      它面临的问题是,代换消元然后通过求偏导得来的驻点,我们无法控制其满足约束条件g(x,y,z),因此我们需要寻找新的方法来解决这种条件极值问题。

      首先这里给出方向导数和梯度中给出的等式关系,这个具体的由来我们会在该小结中详细介绍。

      对于可微函数f(x,y,z),有如下关系成立:

                                       (1)

      那么现在假设有一条曲线C的参数形式为r(t) = g(t)i + h(t)j + k(t)k(这里相当于是限制函数),则我们很自然的能够得到如下关系式:

                                   (2)

      此时我们已经把待求极值函数和约束条件联系了起来,下面我们则要利用极值点这个条件了。某点P落在限制函数曲线g(x,y,z)上,从结果出发,假设P是极值点,利用其必要条件,有(2)为0.即梯度f和任意方向向量正交。

      上面这个过程其实是一个定理,叫做正交梯度定理。

      随后再基于方向梯度一节当中的一个原理:梯度g和同层曲面g=0是正交的(详细的解释我们在这一小节的文章中会给出),因此我们能够看到,梯度f和梯度g能够同时正交于一个方向向量,结合P点落在限制函数曲线g(x,y,z)上的条件,我们得到如下两个等式:

       

      即我们求解满足上述方程组的参数x0、y0、z0、λ,(x0,y0,z0)即为驻点。这就完美的解决了代换所引起的对约束函数的利用不足了。

      这就是拉格朗日乘数法的原理。

  • 相关阅读:
    无标题
    OSI七层模型介绍
    Microsoft Visual Studio .NET 系统必备
    如何得到硬盘序列号[C#]
    session变量
    使用Installshield制作asp,asp.net应用的安装程序
    如何远程备份sql server数据库
    VS.NET打印思想与2003/5DataGrid、DataGridView及二维数据如ListView等终极打印实现(全部源码)
    6.22打包建立ISS虚拟目录,安装完运行你想运行的程序
    关于网关的精典描述通俗易懂
  • 原文地址:https://www.cnblogs.com/rhythmic/p/5659063.html
Copyright © 2011-2022 走看看