zoukankan      html  css  js  c++  java
  • 在docker里安装elasticsearch和Kibana

    安装elasticsearch和Kibana

    1.1.下载镜像

    docker search elasticsearch
    docker pull elasticsearch:7.14.2
    

    1.2.创建挂载的目录  

    mkdir -p /mydata/elasticsearch/config
    mkdir -p /mydata/elasticsearch/data
    chmod -R 777
    echo "http.host: 0.0.0.0" >> /mydata/elasticsearch/config/elasticsearch.yml 
    chmod -R 777
    

    1.3.创建容器并启动

    docker run --name elasticsearch -p 9200:9200 -p 9300:9300  -e "discovery.type=single-node" -e ES_JAVA_OPTS="-Xms64m -Xmx128m" -v /mydata/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml -v /mydata/elasticsearch/data:/usr/share/elasticsearch/data -v /mydata/elasticsearch/plugins:/usr/share/elasticsearch/plugins -d elasticsearch:7.14.2
    
    其中elasticsearch.yml是挂载的配置文件,data是挂载的数据,plugins是es的插件,如ik,而数据挂载需要权限,需要设置data文件的权限为可读可写,需要下边的指令。
    chmod -R 777 要修改的路径
    
    -e "discovery.type=single-node" 设置为单节点
    特别注意:
    -e ES_JAVA_OPTS="-Xms256m -Xmx256m" \ 测试环境下,设置ES的初始内存和最大内存,否则导致过大启动不了ES
    

    1.4..Kibana启动  

      

    mkdir -p /data/elk7/kibana/config/
    vi /data/elk7/kibana/config/kibana.yml
    
    
    #
    # ** THIS IS AN AUTO-GENERATED FILE **
    #
    
    # Default Kibana configuration for docker target
    server.name: kibana
    server.host: "0"
    elasticsearch.hosts: [ "http://192.168.31.190:9200" ]
    xpack.monitoring.ui.container.elasticsearch.enabled: true
    
    docker pull kibana:7.14.2


    docker run -d \
    --name=kibana \
    --restart=always \
    -p 5601:5601 \
    -v /data/elk7/kibana/config/kibana.yml:/usr/share/kibana/config/kibana.yml \
    kibana:7.14.2

    查看日志

    docker logs -f kibana

    {"type":"log","@timestamp":"2020-08-27T03:00:28Z","tags":["listening","info"],"pid":6,"message":"Server running at http://0:5601"}

    {"type":"log","@timestamp":"2020-08-27T03:00:28Z","tags":["info","http","server","Kibana"],"pid":6,"message":"http server running at http://0:5601"}

    然后访问页面
    http://自己的IP地址:5601
    http://自己的IP地址:5601/app/kibana

    docker pull kibana:7.14.2

    docker run --name kibana -e ELASTICSEARCH_HOSTS=http://自己的IP地址:9200 -p 5601:5601 -d kibana:7.14.2
    //docker run --name kibana -e ELASTICSEARCH_URL=http://自己的IP地址:9200 -p 5601:5601 -d kibana:7.14.2

    进入容器修改相应内容
    server.port: 5601
    server.host: 0.0.0.0
    elasticsearch.hosts: [ "http://自己的IP地址:9200" ]
    i18n.locale: "Zh-CN"

    然后访问页面
    http://自己的IP地址:5601/app/kibana

    2. kibana操作ElasticSearch

    2.1._cat

    GET /_cat/node 查看所有节点
    GET /_cat/health 查看es健康状况
    GET /_cat/master 查看主节点
    GET /_cat/indices 查看所有索引
    

    2.2 保存文档

    保存一个数据,保存在那个索引的那个类型下,指定用唯一的标识,customer为索引,external为类型,1为标识。其中PUT和POST都可以,POST新增。如果不指定ID,会自动生成ID,指定ID就会修改这个数据,并新增版本号。PUT可以新增可以修改,PUT必须指定ID,一般都用来修改操作,不指定ID会报错。

    PUT customer/external/1
    {
      "name":"张三"
    }
    
    返回结果
    {
      "_index" : "customer",
      "_type" : "external",
      "_id" : "1",
      "_version" : 3,
      "result" : "updated",
      "_shards" : {
        "total" : 2,
        "successful" : 1,
        "failed" : 0
      },
      "_seq_no" : 1001,
      "_primary_term" : 2
    }
    

    2.3 查询文档

    GET customer/external/1
        
    结果:
    {
      "_index" : "customer", //在那个索引
      "_type" : "external", //在那个类型
      "_id" : "1", //记录ID
      "_version" : 1, //版本号
      "_seq_no" : 0, //并发控制字段,每次更新就+1,可用于乐观锁
      "_primary_term" : 1, //主分片重新分配,如重启,就会变化
      "found" : true, //true就是找到数据了
      "_source" : { //数据
        "name" : "张三"
      }
    }
    

    2.4 更新文档

    POST操作带_update会对比原来的数据,如果是一样的那就不会更新了
    POST customer/external/1/_update
    {
      "doc":{
        "name":"你好"
      }
    }
    POST操作不带_update会直接更新操作
    POST customer/external/1
    {
      "name":"你好"
    }
    

    2.5 删除文档

    DELETE customer/external/1
    

    2.6 bulk批量API

    需要加_bulk,然后请求体中的index是id,下边的是要保存的内容
    POST customer/external/_bulk
    {"index":{"_id":1}}
    {"name":"榨干"}
    {"index":{"_id":2}}
    {"name":"你瞅啥"}
    

    2.7 查询操作  .   

    先导入批量的数据,在进行查询操作。

    1>.一种是通过REST request URI 发送搜索的参数,其中_search是固定写法,q=*是查询所有,sort=balance排序是按照balance排序的,asc是升序排序 GET customer/_search?q=*&sort=balance:asc 结果集,took是花费时间,timed_out没有超时,hits是命中的记录
    2>.另一种是通过REST request body 来发送,query代表查询条件,match_all是查询所有,sort代表排序条件
    GET customer/_search
    {
      "query": {
        "match_all": {}
      },
      "sort": [
        {
          "balance": "asc"
        }
      ]
    }
    

    3>.分页操作,from是从第几条数据开始,size是一页多少个,默认是十条数据

    4>.按需返回参数为,_source  

    GET customer/_search
    {
      "query": {
        "match_all": {}
      },
      "sort": [
        {
          "balance": "asc"
        }
      ],
      "from": 11,
      "size": 2, 
      "_source": ["account_number","balance"]
    }
    

     5>.全文检索,使用match操作,查询的结果是按照评分从高到低排序的   

    GET customer/_search
    {
      "query": {
        "match": {
          "age": 20
        }
      }
    }
    

     6>.match_phrase的精确匹配,

    GET customer/_search
    {
      "query": {
        "match_phrase": {
          "age": 20
        }
      }
    }
    

     7>.多字段匹配,multi_match  

    GET customer/_search
    {
      "query": {
        "multi_match": {
          "query": "mill",
          "fields": ["address","email"]
        }
      }
    }
    

     8>.复合查询bool,其中must是必须满足,must_not是必须不满足,should是应该满足,不过不满足的也能查出来,就是得分低,range是区间查询 

    GET customer/_search
    {
      "query": {
        "bool": {
          "must": [
            {"match": {
              "gender": "F"
            }},
            {"match": {
              "address": "Mill"
            }}
          ],
          "must_not": [
            {"match": {
              "age": "38"
            }}
          ],
          "should": [
            {"match": {
              "lastname": "Long"
            }}
          ]
        }
      }
    }
    

      9>.filter过滤,区间查询操作,而且filter不会计算相关性得分

    GET customer/_search
    {
      "query": {
      "bool": {
        "filter": [
          {"range": {
            "age": {
              "gte": 10,
              "lte": 30
            }
          }}
        ]
      }
      }
    }
    

      10>.team查询,一些精确字段的推荐使用team,而一些全文检索的推荐使用match  

    GET customer/_search
    {
      "query": {
        "term": {
          "age": "28"
        }
      }
    }
    

     11.keyword的作用:当有keyword的时候,就会精确查找,而没有keyword的时候,这个值会当成一个关键字

    GET customer/_search
    {
      "query": {"match": {
        "address.keyword": "789 Madison"
      }}
    }
    
    GET customer/_search
    {
      "query": {"match_phrase": {
        "address": "789 Madison"
      }}
    }
    

     

    2.13 es分析功能(聚合函数)

    搜索address中包含mill的所有人的年龄分布以及平均年龄,但不显示这些人的详情
    其中,aggs代表使用聚合函数,terms为结果种类求和,avg为平均值,size为0则不显示详细信息
    GET customer/_search
    {
      "query": {
        "match": {
          "address": "mill"
        }
      },
      "aggs": {
        "ageagg": {
          "terms": {
            "field": "age",
            "size": 10
          }
        },
        "ageavg":{
          "avg": {
            "field": "age"
          }
        }
      },
      "size": 0
    }
    
    聚合中还可以有子聚合
    GET customer/_search
    {
      "query": {
        "match_all": {}
      },
      "aggs": {
        "ageagg": {
          "terms": {
            "field": "age",
            "size": 10
          },
          "aggs": {
            "ageAvg": {
              "avg": {
                "field": "balance"
              }
            }
          }
        }
      },
      "size": 0
    }
    

    3 rest-high-level-client整合ElasticSearch

    3.1.导入依赖  

    	<!-- 修改springboot默认整合的es的版本 -->
            <properties>
                <java.version>1.8</java.version>
                <elasticsearch.version>7.6.2</elasticsearch.version>
            </properties>
        
            <!-- elasticsearch-rest-high-level-client -->
            <dependency>
                <groupId>org.elasticsearch.client</groupId>
                <artifactId>elasticsearch-rest-high-level-client</artifactId>
                <version>7.6.2</version>
            </dependency>
            
            <dependency>
                <groupId>com.alibaba</groupId>
                <artifactId>fastjson</artifactId>
                <version>1.2.68</version>
            </dependency>
    

    3.2.编写配置类

    @Configuration
    public class ElasticSearchClientConfig {
        @Bean
        public RestHighLevelClient restHighLevelClient(){
            RestHighLevelClient client = new RestHighLevelClient(
                    RestClient.builder(
                            new HttpHost("自己的IP地址", 9200, "http")
                    )
            );
            return client;
        }
    }
    

    3.3.进行es的索引操作

    @Autowired
        @Qualifier("restHighLevelClient")
        private RestHighLevelClient client;
        //index名字,静态一般都是放在另一个类中的
        public static final String ES_INDEX="han_index";
    
        //创建索引
        @Test
        public void createIndex() throws IOException {
            //1. 创建索引
            CreateIndexRequest index = new CreateIndexRequest(ES_INDEX);
            //2. 客户端执行请求,请求后获得相应
            CreateIndexResponse response = client.indices().create(index, RequestOptions.DEFAULT);
            //3.打印结果
            System.out.println(response.toString());
        }
        //测试索引是否存在
        @Test
        public void exitIndex() throws IOException{
            //1.
            GetIndexRequest request = new GetIndexRequest(ES_INDEX);
            boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
            System.out.println("是否存在"+exists);
        }
        //删除索引
        @Test
        public void deleteIndex() throws IOException{
            DeleteIndexRequest request = new DeleteIndexRequest(ES_INDEX);
            AcknowledgedResponse response = client.indices().delete(request, RequestOptions.DEFAULT);
            System.out.println("是否删除"+response);
        }

    3.4.es的文档操作  

        @Autowired
        @Qualifier("restHighLevelClient")
        private RestHighLevelClient client;
    
        public static final String ES_INDEX="han_index";
    
        //创建文档
        @Test
        public void createDocument() throws IOException {
            //创建对象
            UserInfo userInfo = new UserInfo("张三",12);
            //创建请求
            IndexRequest request = new IndexRequest(ES_INDEX);
            //规则
            request.id("1").timeout(TimeValue.timeValueSeconds(1));
            //将数据放到请求中
            request.source(JSON.toJSONString(userInfo), XContentType.JSON);
            //客户端发送请求,获取相应的结果
            IndexResponse response = client.index(request, RequestOptions.DEFAULT);
            //打印一下
            System.out.println(response.toString());
            System.out.println(response.status());
        }
    
        //判断是否存在
        @Test
        public void exitDocument() throws IOException {
            GetRequest request = new GetRequest(ES_INDEX, "1");
            //不获取返回的_source 的上下文
            request.fetchSourceContext(new FetchSourceContext(false));
            request.storedFields("_none");
    
            boolean exists = client.exists(request, RequestOptions.DEFAULT);
            System.out.println(exists);
        }
    
        //获取文档信息
        @Test
        public void getDocument() throws IOException {
            GetRequest request = new GetRequest(ES_INDEX, "1");
            GetResponse response = client.get(request, RequestOptions.DEFAULT);
            System.out.println("获取到的结果"+response.getSourceAsString());
        }
    
        //更新文档
        @Test
        public void updateDocument() throws IOException {
            //创建对象
            UserInfo userInfo = new UserInfo("李四",12);
    
            UpdateRequest request = new UpdateRequest(ES_INDEX, "1");
            request.timeout("1s");
    
            request.doc(JSON.toJSONString(userInfo),XContentType.JSON);
            UpdateResponse response = client.update(request, RequestOptions.DEFAULT);
            System.out.println(response.status());
        }
    
        //删除文档
        @Test
        public void deleteDocument() throws IOException{
            DeleteRequest request = new DeleteRequest(ES_INDEX, "1");
            request.timeout("1s");
    
            DeleteResponse response = client.delete(request, RequestOptions.DEFAULT);
            System.out.println(response.status());
        }
    
        //批量添加
        @Test
        public void bulkDocument() throws IOException{
            BulkRequest request = new BulkRequest();
            request.timeout("10s");
    
            ArrayList<UserInfo> userInfos = new ArrayList<>();
            userInfos.add(new UserInfo("李四",1));
            userInfos.add(new UserInfo("李四",2));
            userInfos.add(new UserInfo("李四",3));
            userInfos.add(new UserInfo("李四",4));
            userInfos.add(new UserInfo("李四",5));
            userInfos.add(new UserInfo("李四",6));
            userInfos.add(new UserInfo("李四",7));
    
            //进行批处理请求
            for (int i = 0; i <userInfos.size() ; i++) {
                request.add(
                        new IndexRequest(ES_INDEX)
                        .id(""+(i+1))
                        .source(JSON.toJSONString(userInfos.get(i)),XContentType.JSON));
            }
    
            BulkResponse response = client.bulk(request, RequestOptions.DEFAULT);
            System.out.println(response.hasFailures());
        }
    
        //查询
        @Test
        public void SearchDocument() throws IOException{
            SearchRequest request = new SearchRequest(ES_INDEX);
            //构建搜索条件
            SearchSourceBuilder builder = new SearchSourceBuilder();
    
            //查询条件使用QueryBuilders工具来实现
            //QueryBuilders.termQuery 精准查询
            //QueryBuilders.matchAllQuery() 匹配全部
            MatchQueryBuilder matchQuery = QueryBuilders.matchQuery("name", "李四");
            builder.query(matchQuery);
            builder.timeout(new TimeValue(60, TimeUnit.SECONDS));
    
            request.source(builder);
    
            SearchResponse response = client.search(request, RequestOptions.DEFAULT);
            System.out.println("查询出的结果"+JSON.toJSONString(response.getHits()));
        }
    

      

      

     

     

      

      

      

      

      

  • 相关阅读:
    Leetcode: Largest Rectangle in Histogram
    Leetcode: Sum Root to Leaf Numbers
    Leetcode: LRU Cache
    Leetcode: Candy
    Leetcode: Interleaving String
    Leetcode: Implement strStr()
    Leetcode: Gray Code
    Leetcode: Restore IP addresses
    Leetcode: Median of Two Sorted Arrays
    Leetcode: Pow(x, n) and Summary: 负数补码总结
  • 原文地址:https://www.cnblogs.com/river2005/p/15585964.html
Copyright © 2011-2022 走看看