zoukankan      html  css  js  c++  java
  • B+树

    BTreeNode.h

    template<typename Type> class BTree;
    
    template<typename Type> class BTreeNode{
    public:
        friend BTree<Type>;
        BTreeNode(): m_nMaxSize(0), m_ptr(NULL), m_pparent(NULL){}
        BTreeNode(int size): m_nsize(0), m_nMaxSize(size), m_pparent(NULL){
            m_pkey = new Type[size+1];
            m_ptr = new BTreeNode<Type> *[size+1];
            for (int i=0; i<=size; i++){
                m_ptr[i] = NULL;
                m_pkey[i] = this->m_Infinity;
            }
        }
        void Destroy(BTreeNode<Type> *root);
        ~BTreeNode(){
    		if (m_nMaxSize){
    			delete[] m_pkey;
    			for (int i=0; i<=m_nMaxSize; i++){
    				m_ptr[i] = NULL;
    			}
    		}
        }
        bool IsFull(){
            return m_nsize == m_nMaxSize;
        }
        Type GetKey(int i){
            if (this){
                return this->m_pkey[i];
            }
            return -1;
        }
    
    private:
        int m_nsize;
        int m_nMaxSize;     //the Max Size of key
        Type *m_pkey;
        BTreeNode<Type> *m_pparent;
        BTreeNode<Type> **m_ptr;
        static const Type m_Infinity = 10000;
    };
    
    template<typename Type> struct Triple{
        BTreeNode<Type> *m_pfind;
        int m_nfind;
        bool m_ntag;
    };
    
    template<typename Type> void BTreeNode<Type>::Destroy(BTreeNode<Type> *root){
        if (NULL == root){
            return;
        }
        for (int i=0; i<root->m_nsize; i++){
            Destroy(root->m_ptr[i]);
        }
        delete root;
    }
    

    BTree.h

    #include "BTreeNode.h"
    
    
    template<typename Type> class BTree{
    public:
        BTree(int size): m_nMaxSize(size), m_proot(NULL){}
        ~BTree();
        Triple<Type> Search(const Type item);
        int Size();
        int Size(BTreeNode<Type> *root);
        bool Insert(const Type item);   //insert item
        bool Remove(const Type item);   //delete item
        void Print();                   //print the BTree
        BTreeNode<Type> *GetParent(const Type item);    
    
    private:
        //insert the pright and item to pinsert in the nth place;
        void InsertKey(BTreeNode<Type> *pinsert, int n, const Type item, BTreeNode<Type> *pright); 
    
        void PreMove(BTreeNode<Type> *root, int n); //move ahead
        
        //merge the child tree
        void Merge(BTreeNode<Type> *pleft, BTreeNode<Type> *pparent, BTreeNode<Type> *pright, int n); 
    
        //adjust with the parent and the left child tree
        void LeftAdjust(BTreeNode<Type> *pright, BTreeNode<Type> *pparent, int min, int n); 
    
        //adjust with the parent and the left child tree
        void RightAdjust(BTreeNode<Type> *pleft, BTreeNode<Type> *pparent, int min, int n); 
    
        void Print(BTreeNode<Type> *start, int n = 0);
        
    private:
        BTreeNode<Type> *m_proot;
        const int m_nMaxSize;
    };
    
    
    template<typename Type> BTree<Type>::~BTree(){
        m_proot->Destroy(m_proot);
    }
    template<typename Type> Triple<Type> BTree<Type>::Search(const Type item){
        Triple<Type> result;
        BTreeNode<Type> *pmove = m_proot, *parent = NULL;
        int i = 0;
        while (pmove){
            i = -1;
            while (item > pmove->m_pkey[++i]); //find the suit position
            if (pmove->m_pkey[i] == item){
                result.m_pfind = pmove;
                result.m_nfind = i;
                result.m_ntag = 1;
                return result;
            }
            parent = pmove;
            pmove = pmove->m_ptr[i];    //find in the child tree
        }
        result.m_pfind = parent;
        result.m_nfind = i;
        result.m_ntag = 0;
        return result;
    }
    
    template<typename Type> void BTree<Type>::InsertKey(BTreeNode<Type> *pinsert, int n, const Type item, BTreeNode<Type> *pright){
        pinsert->m_nsize++;
        for (int i=pinsert->m_nsize; i>n; i--){
            pinsert->m_pkey[i] = pinsert->m_pkey[i-1];
            pinsert->m_ptr[i+1] = pinsert->m_ptr[i];
        }
        pinsert->m_pkey[n] = item;
        pinsert->m_ptr[n+1] = pright;
    
        if (pinsert->m_ptr[n+1]){       //change the right child tree's parent
            pinsert->m_ptr[n+1]->m_pparent = pinsert;
            for (int i=0; i<=pinsert->m_ptr[n+1]->m_nsize; i++){
                if (pinsert->m_ptr[n+1]->m_ptr[i]){
                    pinsert->m_ptr[n+1]->m_ptr[i]->m_pparent = pinsert->m_ptr[n+1];
                }
            }
        }
        
    }
    template<typename Type> bool BTree<Type>::Insert(const Type item){
        if (NULL == m_proot){       //insert the first node
            m_proot = new BTreeNode<Type>(m_nMaxSize);
            m_proot->m_nsize = 1;
            m_proot->m_pkey[1] = m_proot->m_pkey[0];
            m_proot->m_pkey[0] = item;
            m_proot->m_ptr[0] = m_proot->m_ptr[1] =NULL;
            return 1;
        }
        Triple<Type> find = this->Search(item); //search the position
        if (find.m_ntag){
            cerr << "The item is exist!" << endl;
            return 0;
        }
        BTreeNode<Type> *pinsert = find.m_pfind, *newnode;
        BTreeNode<Type> *pright = NULL, *pparent;
        Type key = item;
        int n = find.m_nfind;
    
        while (1){
            if (pinsert->m_nsize < pinsert->m_nMaxSize-1){  //There is some space
                InsertKey(pinsert, n, key, pright);
                return 1;
            }
    
            int m = (pinsert->m_nsize + 1) / 2;     //get the middle item
            InsertKey(pinsert, n, key, pright);     //insert first, then break up
            newnode = new BTreeNode<Type>(this->m_nMaxSize);//create the newnode for break up
    
            //break up
            for (int i=m+1; i<=pinsert->m_nsize; i++){      
                newnode->m_pkey[i-m-1] = pinsert->m_pkey[i];
                newnode->m_ptr[i-m-1] = pinsert->m_ptr[i];
                pinsert->m_pkey[i] = pinsert->m_Infinity;
                pinsert->m_ptr[i] = NULL;
            }
            newnode->m_nsize = pinsert->m_nsize - m - 1;
            pinsert->m_nsize = m;
    
            for (int i=0; i<=newnode->m_nsize; i++){    //change the parent
                if (newnode->m_ptr[i]){
                    newnode->m_ptr[i]->m_pparent = newnode;
                    for (int j=0; j<=newnode->m_ptr[i]->m_nsize; j++){
                        if (newnode->m_ptr[i]->m_ptr[j]){
                            newnode->m_ptr[i]->m_ptr[j]->m_pparent = newnode->m_ptr[i];
                        }
                    }
                }
            }
            for (int i=0; i<=pinsert->m_nsize; i++){    //change the parent
                if (pinsert->m_ptr[i]){
                    pinsert->m_ptr[i]->m_pparent = pinsert;
                    for (int j=0; j<=pinsert->m_nsize; j++){
                        if (pinsert->m_ptr[i]->m_ptr[j]){
                            pinsert->m_ptr[i]->m_ptr[j]->m_pparent = pinsert->m_ptr[i];
                        }
                    }
                }
            }
            //break up over
            
            key = pinsert->m_pkey[m];
            pright = newnode;
            if (pinsert->m_pparent){    //insert the key to the parent
                pparent = pinsert->m_pparent;
                n = -1;
                pparent->m_pkey[pparent->m_nsize] = pparent->m_Infinity;
                while (key > pparent->m_pkey[++n]);
                newnode->m_pparent = pinsert->m_pparent;
                pinsert = pparent;
            }
            else {              //create new root
                m_proot = new BTreeNode<Type>(this->m_nMaxSize);
                m_proot->m_nsize = 1;
                m_proot->m_pkey[1] = m_proot->m_pkey[0];
                m_proot->m_pkey[0] = key;
                m_proot->m_ptr[0] = pinsert;
                m_proot->m_ptr[1] = pright;
                newnode->m_pparent = pinsert->m_pparent = m_proot;
                return 1;
            }
        }
    }
    
    template<typename Type> void BTree<Type>::PreMove(BTreeNode<Type> *root, int n){
        root->m_pkey[root->m_nsize] = root->m_Infinity;
        for (int i=n; i<root->m_nsize; i++){
            root->m_pkey[i] = root->m_pkey[i+1];
            root->m_ptr[i+1] = root->m_ptr[i+2];
        }
        
        root->m_nsize--;
    }
    
    template<typename Type> void BTree<Type>::Merge(BTreeNode<Type> *pleft, BTreeNode<Type> *pparent, BTreeNode<Type> *pright, int n){
        pleft->m_pkey[pleft->m_nsize] = pparent->m_pkey[n];
        BTreeNode<Type> *ptemp;
        
        for (int i=0; i<=pright->m_nsize; i++){ //merge the two child tree and the parent
            pleft->m_pkey[pleft->m_nsize+i+1] = pright->m_pkey[i];
            pleft->m_ptr[pleft->m_nsize+i+1] = pright->m_ptr[i];
            ptemp = pleft->m_ptr[pleft->m_nsize+i+1];
            if (ptemp){         //change thd right child tree's parent
                ptemp->m_pparent = pleft;
                for (int j=0; j<=ptemp->m_nsize; j++){
                    if (ptemp->m_ptr[j]){
                        ptemp->m_ptr[j]->m_pparent = ptemp;
                    }
                }
            }
        }
        
        pleft->m_nsize = pleft->m_nsize + pright->m_nsize + 1;
        delete pright;
        PreMove(pparent, n);    
    //    this->Print();
    }
    
    template<typename Type> void BTree<Type>::LeftAdjust(BTreeNode<Type> *pright, BTreeNode<Type> *pparent, int min, int n){
        BTreeNode<Type> *pleft = pparent->m_ptr[n-1], *ptemp;
        if (pleft->m_nsize > min-1){
            for (int i=pright->m_nsize+1; i>0; i--){
                pright->m_pkey[i] = pright->m_pkey[i-1];
                pright->m_ptr[i] = pright->m_ptr[i-1];
            }
            pright->m_pkey[0] = pparent->m_pkey[n-1];
            
            pright->m_ptr[0] = pleft->m_ptr[pleft->m_nsize];
            ptemp = pright->m_ptr[0];
            if (ptemp){     //change the tree's parent which is moved
                ptemp->m_pparent = pright;
                for (int i=0; i<ptemp->m_nsize; i++){
                    if (ptemp->m_ptr[i]){
                        ptemp->m_ptr[i]->m_pparent = ptemp;
                    }
                }
            }
            pparent->m_pkey[n-1] = pleft->m_pkey[pleft->m_nsize-1];
            pleft->m_pkey[pleft->m_nsize] = pleft->m_Infinity;
            pleft->m_nsize--;
            pright->m_nsize++;
        }
        else {
            Merge(pleft, pparent, pright, n-1);
        }
    //       this->Print();
    }
    
    template<typename Type> void BTree<Type>::RightAdjust(BTreeNode<Type> *pleft, BTreeNode<Type> *pparent, int min, int n){
        BTreeNode<Type> *pright = pparent->m_ptr[1], *ptemp;
        if (pright && pright->m_nsize > min-1){
            pleft->m_pkey[pleft->m_nsize] = pparent->m_pkey[0];
            pparent->m_pkey[0] = pright->m_pkey[0];
            pleft->m_ptr[pleft->m_nsize+1] = pright->m_ptr[0];
            ptemp = pleft->m_ptr[pleft->m_nsize+1];
            if (ptemp){         //change the tree's parent which is moved
                ptemp->m_pparent = pleft;
                for (int i=0; i<ptemp->m_nsize; i++){
                    if (ptemp->m_ptr[i]){
                        ptemp->m_ptr[i]->m_pparent = ptemp;
                    }
                }
            }
            pright->m_ptr[0] = pright->m_ptr[1];
            pleft->m_nsize++;
            PreMove(pright,0);
        }
        else {
            Merge(pleft, pparent, pright, 0);
        }
    }
    
    
    template<typename Type> bool BTree<Type>::Remove(const Type item){
        Triple<Type> result = this->Search(item);
        if (!result.m_ntag){
            return 0;
        }
        BTreeNode<Type> *pdel, *pparent, *pmin;
        int n = result.m_nfind;
        pdel = result.m_pfind;
    
        if (pdel->m_ptr[n+1] != NULL){  //change into delete leafnode
            pmin = pdel->m_ptr[n+1];
            pparent = pdel;
            while (pmin != NULL){
                pparent = pmin;
                pmin = pmin->m_ptr[0];
            }
            pdel->m_pkey[n] = pparent->m_pkey[0];
            pdel = pparent;
            n = 0;
        }
    
        PreMove(pdel, n); //delete the node
    
        int min = (this->m_nMaxSize + 1) / 2;
        while (pdel->m_nsize < min-1){  //if it is not a BTree, then adjust
            n = 0;
            pparent = pdel->m_pparent;
            if (NULL == pparent)
            {
                return 1;
            }
            while (n<= pparent->m_nsize && pparent->m_ptr[n]!=pdel){
                n++;
            }
            if (!n){
                RightAdjust(pdel, pparent, min, n); //adjust with the parent and the right child tree
            }
            else {
                LeftAdjust(pdel, pparent, min, n); //adjust with the parent and the left child tree
            }
            pdel = pparent;
            if (pdel == m_proot){
                break;
            }
        }
        if (!m_proot->m_nsize){         //the root is merged
            pdel = m_proot->m_ptr[0];
            delete m_proot;
            m_proot = pdel;
            m_proot->m_pparent = NULL;
            for (int i=0; i<m_proot->m_nsize; i++){
                if (m_proot->m_ptr[i]){
                    m_proot->m_ptr[i]->m_pparent = m_proot;
                }
            }
        }
        return 1;
    }
    
    template<typename Type> void BTree<Type>::Print(BTreeNode<Type> *start, int n){
        if (NULL == start){
            return;
        }
        if (start->m_ptr[0]){
            Print(start->m_ptr[0], n+1);    //print the first child tree
        }
        else {
            for (int j=0; j<n; j++){
                cout << "     ";
            }
            cout << "NULL" << endl;
        }
    
        for (int i=0; i<start->m_nsize; i++){   //print the orther child tree
            for (int j=0; j<n; j++){
                cout << "     ";
            }
            cout << start->m_pkey[i] << "--->" <<endl;
            if (start->m_ptr[i+1]){
                Print(start->m_ptr[i+1], n+1);
            }
            else {
                for (int j=0; j<n; j++){
                    cout << "     ";
                }
                cout << "NULL" << endl;
            }
        }
    }
    
    template<typename Type> void BTree<Type>::Print(){
        Print(m_proot);
    }
    
    template<typename Type> int BTree<Type>::Size(BTreeNode<Type> *root){
        if (NULL == root){
            return 0;
        }
        int size=root->m_nsize;
        for (int i=0; i<=root->m_nsize; i++){
            if (root->m_ptr[i]){
                size += this->Size(root->m_ptr[i]);
            }
        }
        return size;
    }
    
    template<typename Type> int BTree<Type>::Size(){
        return this->Size(this->m_proot);
    }
    
    template<typename Type> BTreeNode<Type>* BTree<Type>::GetParent(const Type item){
        Triple<Type> result = this->Search(item);
        return result.m_pfind->m_pparent;
    }
    

    test.cpp
    #include <iostream>
    #include <cstdlib>
    
    using namespace std;
    
    #include "BTree.h"
    
    int main(){
        BTree<int> btree(3);
        int init[]={1,3,5,7,4,2,8,0,6,9,29,13,25,11,32,55,34,22,76,45
            ,14,26,33,88,87,92,44,54,23,12,21,99,19,27,57,18,72,124,158,234
        ,187,218,382,122,111,222,333,872,123};
        for (int i=0; i<49; i++){
            btree.Insert(init[i]);
    
        }
        
        btree.Print();
        cout << endl << endl << endl;
        
        Triple<int> result = btree.Search(13);
        cout << result.m_pfind->GetKey(result.m_nfind) << endl;
        cout << endl << endl << endl;
    
        for (int i=0; i<49; i++){
            btree.Remove(init[i]);
    
            btree.Print();
            cout << endl << endl << endl;
                    
        }
        
        return 0;
    }
    
  • 相关阅读:
    二分查找和线性查找(二)
    自定义数组java(一)
    MATLAB中load和imread的读取方式区别
    图像Demosaic算法及其matlab实现
    Matlab GUI学习总结
    matlab gui matlab gui 鼠标点击显示图像颜色值
    【图像处理】RGB Bayer Color分析
    MATLAB图像处理_Bayer图像处理 & RGB Bayer Color分析
    IPC图像处理项目流程图
    matlab图像处理程序大集合
  • 原文地址:https://www.cnblogs.com/rollenholt/p/2438245.html
Copyright © 2011-2022 走看看