总结起来自己还是太逗比,DP还是太弱,而DP却恰是算法思维能力的体现,现在要开始注重加强这方面的训练,遇到这类题目总是不敢想,令人担忧。
Problem B ZOJ 3656 Bit Magic
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3656
分析:
总共N个数,每个b[i][j]会对a[i]和a[j]的对应二进制位产生一定影响,具体见题目,我们需要做的是判断每个数的每个位是0或1,根据关系建立边,然后直接2sat就可以了。
做的时候一直MLE,发现怎么改都不可能过的。原来是我把每个数所有位都放在图里判断了,其实完全可以每次判断一个位,因为位与位之间毫无影响啊。
代码:
#include <bits/stdc++.h> #define esp 1e-8 #define in freopen("solve_in.txt", "r", stdin); #define out freopen("out.txt", "w", stdout); #define pf(x) ((x)*(x)) #define lowbit(x) ((x)&(-(x))) #define bug(x) printf("Line %d: >>>>>> ", (x)); #define lson l, m, rt<<1 #define rson m+1, r, rt<<1|1 #define pb push_back #define mp make_pair #define pi acos(-1.0) #define pf(x) ((x)*(x)) using namespace std; typedef long long LL; typedef unsigned short US; const int maxn = 1100; stack<US> S; vector<US> g[maxn*2]; bitset<maxn*2> mark; struct TwoSAT { int n, c; bool dfs(int x) { if(mark[x^1]) return false; if(mark[x]) return true; mark[x] = 1; S.push(x); for(int i = 0; i < (int)g[x].size(); i++) { if(!dfs(g[x][i])) return false; } return true; } void init(int n) { this->n = n; while(!S.empty()) S.pop(); for(int i = 0; i < 2*maxn; i++) g[i].clear(); mark.reset(); } void add(US x, US y) { g[x].pb(y); } bool solve(int n) { for(int i = 0; i < 2*n; i += 2) { if(!mark[i] && !mark[i+1]) { c = 0; if(!dfs(i)) { while(!S.empty()) mark[S.top()] = false, S.pop(); if(!dfs(i+1)) return false; } } } return true; } } sat; int idx(int u, int v) { return u; } const int maxm = 555; int a[maxm][maxm]; int main() { int n; while(scanf("%d", &n) == 1) { int ok = 1; for(int i = 0; i < n; i++) for(int j = 0; j < n; j++) scanf("%d", &a[i][j]); for(int k = 0; k < 31 && ok; k++) { sat.init(2*n); for(int i = 0; i < n && ok; i++) for(int j = 0; j < n &&ok; j++) { int &y = a[i][j]; if(i == j) { if(y) ok = 0; continue; } if(i%2 == 1 && j%2 == 1) { int u = idx(i, k); int v = idx(j, k); if(y&1) { sat.add(u<<1, v<<1|1); sat.add(v<<1, u<<1|1); } else { sat.add(u<<1|1, u<<1); sat.add(v<<1|1, v<<1); // sat.add(u<<1, v<<1); // sat.add(v<<1, u<<1); } y >>= 1; } else if(i%2 == 0 && j%2 == 0) { int u = idx(i, k); int v = idx(j, k); if(y&1) { sat.add(u<<1, u<<1|1); sat.add(v<<1, v<<1|1); } else { sat.add(u<<1|1, v<<1); sat.add(v<<1|1, u<<1); } y >>= 1; } else { int u = idx(i, k); int v = idx(j, k); if(y&1) { sat.add(u<<1, v<<1|1); sat.add(v<<1, u<<1|1); sat.add(u<<1|1, v<<1); sat.add(v<<1|1, u<<1); } else { sat.add(u<<1, v<<1); sat.add(v<<1, u<<1); sat.add(u<<1|1, v<<1|1); sat.add(v<<1|1, u<<1|1); } y >>= 1; } } if(!sat.solve(n*2)) ok = 0; } if(ok) puts("YES"); else puts("NO"); } return 0; }
Problem C ZOJ 3657 The Little Girl who Picks Mushrooms 简单题
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3657
分析:
对于n <= 3,结果显然为1024,n == 4时,需要判断能否从中取出3个数和位1024整数倍,能够的话结果为1024,或者判断任意3个数作为剩下的数,然后计算结果。
n == 5则只能看能否取出3个数为1024整数倍,能则根据剩下的值计算结果。
代码:
1 #include <bits/stdc++.h> 2 #define esp 1e-8 3 #pragma comment(linker, "/STACK:102400000,102400000") 4 #define in freopen("F:\rootial\data\data.txt", "r", stdin); 5 #define IN freopen("solve_in.txt", "r", stdin); 6 #define out freopen("out.txt", "w", stdout); 7 #define pf(x) ((x)*(x)) 8 #define lowbit(x) ((x)&(-(x))) 9 #define bug(x) printf("Line %d: >>>>>> ", (x)); 10 #define lson l, m, rt<<1 11 #define rson m+1, r, rt<<1|1 12 #define pb push_back 13 #define mp make_pair 14 #define pi acos(-1.0) 15 #define pf(x) ((x)*(x)) 16 17 using namespace std; 18 typedef long long LL; 19 int a[10]; 20 21 int main(){ 22 23 int n; 24 while(scanf("%d", &n) == 1){ 25 int sum = 0; 26 for(int i = 0; i < n; i++){ 27 scanf("%d", a+i), sum += a[i]; 28 } 29 if(n <= 3) cout<<1024<<endl; 30 else{ 31 int ans = 0; 32 if(n == 4){ 33 for(int i = 0; i < 4; i++) 34 for(int j = i+1; j < 4; j++){ 35 int tmp = a[i]+a[j]; 36 if(tmp <= 1024) 37 ans = max(tmp, ans); 38 else ans = max(ans, tmp%1024 + 1024*(tmp%1024 == 0)); 39 } 40 for(int i = 0; i < n; i++) for(int j = i+1; j < n; j++) for(int k = j+1; k < n; k++) 41 { 42 int tmp = a[i]+a[j]+a[k]; 43 if(tmp %1024 == 0) 44 ans = 1024; 45 } 46 } 47 else { 48 for(int i = 0; i < n; i++) for(int j = i+1; j < n; j++) for(int k = j+1; k < n; k++) 49 { 50 int tmp = a[i]+a[j]+a[k]; 51 if(tmp%1024 == 0){ 52 int s = sum-tmp; 53 if(s <= 1024) 54 ans = max(ans, s); 55 else ans = max(ans, s%1024 + 1024*(s%1024 == 0)); 56 } 57 } 58 } 59 cout<<ans<<endl; 60 61 } 62 63 } 64 return 0; 65 }
Problem E ZOJ 3659 Conquer a New Region
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3659
分析:
题意是一棵树,每条边有一个正权值,一个点到另一点的花费是经过的路径上边的最小权值,要求一个中心,其他所有点到这个点的总花费最大。
做法是这样的,按边权值从大到小排序,构建最大生成树,并查集里记录结点个数,及此时这个并查集构成的子树里的总花费,按权值依次选择每条边,遇到两个点不在同一并查集时,由于此时中心肯定在其中一个并查集里,所以计算这两种情况下,连接起来后总花费。因为此时这条边是两个子树里最小的,计算中心在另一并查集里时totalCost = 此并查集结点数目*边cost + 另一并查集花费,取两种情况下最大值作为合并后并查集的花费,并更新结点数目。最后一个并查集的总花费即为结果。
代码:
1 #include <bits/stdc++.h> 2 #define pb push_back 3 #define mp make_pair 4 #define in freopen("data.txt", "r", stdin); 5 #define bug(x) printf("Line : %u >>>>>> ", (x)); 6 7 using namespace std; 8 typedef long long LL; 9 typedef unsigned long long ULL; 10 const int maxn = 200000 + 10; 11 12 struct Edge{ 13 int u, v, c; 14 Edge(){} 15 Edge(int u, int v, int c):u(u), v(v), c(c){} 16 bool operator < (const Edge &o)const{ 17 return c > o.c; 18 } 19 }e[maxn]; 20 struct Node{ 21 int f, num; 22 LL cost; 23 Node(){} 24 Node(int f, int num, LL cost):f(f), num(num), cost(cost){} 25 } fa[maxn]; 26 LL ans = 0; 27 int findset(int x){ return x == fa[x].f ? x : fa[x].f = findset(fa[x].f);} 28 void makeTree(int n){ 29 for(int i = 1; i <= n; i++) fa[i] = Node(i, 1, 0); 30 for(int i = 0; i < n-1; i++){ 31 int u = e[i].u; 32 int v = e[i].v; 33 int c = e[i].c; 34 int fu = findset(u); 35 int fv = findset(v); 36 if(fu != fv){ 37 LL ans1 = (LL)fa[fu].num*c + fa[fv].cost; 38 LL ans2 = (LL)fa[fv].num*c + fa[fu].cost; 39 ans1 = max(ans1, ans2); 40 fa[fu].f = fv; 41 fa[fv].cost = ans1; 42 fa[fv].num += fa[fu].num; 43 ans = max(ans, ans1); 44 } 45 } 46 } 47 int main() { 48 49 int n; 50 while(scanf("%d", &n) == 1){ 51 ans = 0; 52 for(int i = 0; i < n-1; i++) scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].c); 53 sort(e, e+n-1); 54 makeTree(n); 55 printf("%lld ", ans); 56 } 57 return 0; 58 }
Problem H ZOJ 3662 Math Magic
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3662
分析:
问选取k个正数,和为N,最小公倍数为M,有多少种方法?考虑数的顺序。
对于M首先分解质因数Div[i],记录每个Div[i]数目cnt[i],然后考虑k个数中每个数a[k],包好的质因数Div[i]的个数,由于LCM为M,每个Div[i], 要保证k个数中至少有一个数 包含有cnt[i]个。这里用bitmask表示,s相应位为1,表示Div[i]已经有a[k]包含cnt[i]个了
思路是Dp的,考虑前k个数,和为sum,Div的包含状态表示为s时选取方案数目。
转移时:dp[i+1][j+sum][s|ss] += dp[i][j][s];
首先要预处理一下每个a[k]所有可能情况,也就是根据可能包含的Div[i]的数目,算出和sum,状态s,dfs处理一下。
代码:
1 #include <bits/stdc++.h> 2 #define pb push_back 3 #define mp make_pair 4 #define in freopen("data.txt", "r", stdin); 5 #define bug(x) printf("Line : %u >>>>>> ", (x)); 6 7 using namespace std; 8 typedef long long LL; 9 typedef unsigned long long ULL; 10 const int M = (int)1e9 + 7; 11 const int maxn = 1111; 12 LL dp[111][maxn][1<<4]; 13 int p[maxn], vis[maxn], prime; 14 15 void getPrime(int n) { 16 for(int i = 2; i < n; i++) { 17 if(vis[i] == 0) { 18 p[prime++] = i; 19 for(int j = i*i; j < n; j+=i) 20 vis[j] = 1; 21 } 22 } 23 } 24 vector<int> Div; 25 int cnt[maxn]; 26 27 void getDiv(int n) { 28 Div.clear(); 29 for(int i = 0; i < prime; i++) { 30 if(n%p[i] == 0) { 31 Div.pb(p[i]); 32 int sz = Div.size()-1; 33 cnt[sz] = 0; 34 while(n%p[i] == 0) { 35 cnt[sz]++; 36 n /= p[i]; 37 } 38 if(n == 1) break; 39 } 40 } 41 if(n != 1) { 42 Div.pb(n); 43 cnt[Div.size()-1] = 1; 44 } 45 } 46 vector<pair<int, int> > State; 47 void getState(int pos, int sum, int s) { 48 if(pos == 0) { 49 State.pb(make_pair(sum, s)); 50 return; 51 } 52 int tmp = 1; 53 for(int i = 0; i <= cnt[pos-1]; i++, tmp *= Div[pos-1]) { 54 getState(pos-1, sum*tmp, s|(i == cnt[pos-1] ? (1<<(pos-1)) : 0)); 55 } 56 } 57 int main() { 58 59 int n, m, k; 60 getPrime(maxn); 61 while(scanf("%d%d%d", &n, &m, &k) == 3) { 62 getDiv(m); 63 memset(dp, 0, sizeof dp); 64 int sz = Div.size(); 65 State.clear(); 66 getState(Div.size(), 1, 0); 67 dp[0][0][0] = 1; 68 for(int i = 0; i < k; i++) 69 for(int j = 0; j < n; j++) for(int s = 0; s < (1<<sz); s++) { 70 for(int kk = 0; kk < State.size(); kk++) { 71 int sum = State[kk].first; 72 int ss = State[kk].second; 73 if(j+sum <= n) 74 dp[i+1][j+sum][ss|s] = (dp[i+1][j+sum][ss|s] + dp[i][j][s])%M; 75 } 76 } 77 cout<<dp[k][n][(1<<sz)-1]<<endl; 78 } 79 return 0; 80 }
UPD:继续上K题.....
Problem K ZOJ 3665 Yukari's Birthday
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3665
分析:给定n <=10^12,然后求k,r,满足k^1+k^2+....k^r = n 或 n-1。且先满足k*r最小,然后r最小。(k>=2)
由于k >= 2,容易算出对于最大的n,r <= 40,这样就为二分k提供了条件。枚举r,二分k,为了防止k过大时,计算溢出使用double。
二分时注意右边界R <=n^(1/r),我是用exp(1.0/r*log(n)) + 1当做右边界,这样才能过。
代码:
#include <bits/stdc++.h> #define esp 1e-6 #define pb push_back #define mp make_pair #define in freopen("data.txt", "r", stdin); #define bug(x) printf("Line : %d >>>>>> ", (x)); using namespace std; typedef long long LL; typedef unsigned long long ULL; int dblcmp(double x) { if(fabs(x) < esp) return 0; return x > 0 ? 1 : -1; } LL n, ansr, ansk; int check(LL m, int r, LL n) { LL res = 1; for(int i = 0; i < r; i++) res *= m; res--; res /= m-1; res *= m; return dblcmp(res-n); } void getAns(int r, LL n) { LL L = 2, R; R = (LL)(exp(1.0/r*log(1.0*n))) + 1; while(L <= R) { LL m = (L+R)>>1; int sign = check(m, r, n); if(!sign) { if((double)r*m < (double)ansr*ansk || (dblcmp((double)r*m-(double)ansr*ansk) == 0 && r < ansr)) ansr = r, ansk = m; break; } else if(sign > 0) { R = m-1; } else { L = m+1; } } } int main() { while(scanf("%lld", &n) == 1) { ansr = (int)1e8, ansk = (int)1e8; int maxr = (int)(log(n)/log(2)) + 1; for(int r = 1; r <= maxr; r++) { getAns(r, n); getAns(r, n-1); } cout << ansr << ' ' << ansk << endl; } return 0; }