zoukankan      html  css  js  c++  java
  • 特征向量Eigenvalues_and_eigenvectors#Graphs 线性变换

    总结:

    1、线性变换运算封闭,加法和乘法

    2、特征向量经过线性变换后方向不变

    https://en.wikipedia.org/wiki/Linear_map

    Examples of linear transformation matrices

    In two-dimensional space R2 linear maps are described by 2 × 2 real matrices. These are some examples:

    In mathematics, a linear map (also called a linear mappinglinear transformation or, in some contexts, linear function) is a mapping V → W between two modules (including vector spaces) that preserves (in the sense defined below) the operations of addition and scalar multiplication.

    An important special case is when V = W, in which case the map is called a linear operator,[1] or an endomorphism of V. Sometimes the term linear function has the same meaning as linear map, while in analytic geometry it does not.

    A linear map always maps linear subspaces onto linear subspaces (possibly of a lower dimension);[2] for instance it maps a plane through the origin to a planestraight line or point. Linear maps can often be represented as matrices, and simple examples include rotation and reflection linear transformations.

    In the language of abstract algebra, a linear map is a module homomorphism. In the language of category theory it is a morphism in the category of modules over a given ring.

    Definition and first consequences

    Let {\textstyle V} and  {\textstyle W} be vector spaces over the same field {\textstyle \mathbf {K} .} A function {\textstyle f:V\to W} is said to be a linear map if for any two vectors {\textstyle \mathbf {u} ,\mathbf {v} \in V} and any scalar {\textstyle c\in \mathbf {K} } the following two conditions are satisfied:

    {\displaystyle f(\mathbf {u} +\mathbf {v} )=f(\mathbf {u} )+f(\mathbf {v} )} additivity / operation of addition
    {\displaystyle f(c\mathbf {u} )=cf(\mathbf {u} )} homogeneity of degree 1 / operation of scalar multiplication

    Thus, a linear map is said to be operation preserving. In other words, it does not matter whether you apply the linear map before or after the operations of addition and scalar multiplication.

    This is equivalent to requiring the same for any linear combination of vectors, i.e. that for any vectors {\textstyle \mathbf {u} _{1},\ldots ,\mathbf {u} _{n}\in V} and scalars  {\textstyle c_{1},\ldots ,c_{n}\in \mathbf {K} ,} the following equality holds:[3][4]

    {\displaystyle f\left(c_{1}\mathbf {u} _{1}+\cdots +c_{n}\mathbf {u} _{n}\right)=c_{1}f\left(\mathbf {u} _{1}\right)+\cdots +c_{n}f\left(\mathbf {u} _{n}\right).}

    Denoting the zero elements of the vector spaces {\textstyle V} and  {\textstyle W} by  {\textstyle \mathbf {0} _{V}} and  {\textstyle \mathbf {0} _{W}} respectively, it follows that {\textstyle f\left(\mathbf {0} _{V}\right)=\mathbf {0} _{W}.} Let {\textstyle c=0} and {\textstyle \mathbf {v} \in V} in the equation for homogeneity of degree 1:

     {\displaystyle f\left(\mathbf {0} _{V}\right)=f\left(0\mathbf {v} \right)=0f(\mathbf {v} )=\mathbf {0} _{W}.}

    Occasionally,  {\textstyle V} and  {\textstyle W} can be considered to be vector spaces over different fields. It is then necessary to specify which of these ground fields is being used in the definition of "linear". If {\textstyle V} and {\textstyle W} are considered as spaces over the field {\textstyle \mathbf {K} } as above, we talk about {\textstyle \mathbf {K} }-linear maps. For example, the conjugation of complex numbers is an {\textstyle \mathbf {R} }-linear map  {\textstyle \mathbf {C} \to \mathbf {C} }, but it is not  {\textstyle \mathbf {C} }-linear.

    A linear map {\textstyle V\to \mathbf {K} } with {\textstyle \mathbf {K} } viewed as a vector space over itself is called a linear functional.[5]

    These statements generalize to any left-module {\textstyle {}_{R}M} over a ring {\textstyle R} without modification, and to any right-module upon reversing of the scalar multiplication.

    https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Graphs

    In linear algebra, an eigenvector or characteristic vector of a linear transformation is a non-zero vector that does not change its direction when that linear transformation is applied to it. More formally, if T is a linear transformation from a vector space V over a field F into itself and v is a vector in V that is not the zero vector, then v is an eigenvector of T if T(v) is a scalar multiple of v. This condition can be written as the equation

    where λ is a scalar in the field F, known as the eigenvalue, characteristic value, or characteristic root associated with the eigenvector v.

    If the vector space V is finite-dimensional, then the linear transformation T can be represented as a square matrix A, and the vector v by a column vector, rendering the above mapping as a matrix multiplication on the left hand side and a scaling of the column vector on the right hand side in the equation

    There is a correspondence between n by n square matrices and linear transformations from an n-dimensional vector space to itself. For this reason, it is equivalent to define eigenvalues and eigenvectors using either the language of matrices or the language of linear transformations.[1][2]

    Geometrically an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction that is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.[3]

     

     math.mit.edu/~gs/linearalgebra/ila0601.pdf

     A100 was found by using the eigenvalues of A, not by multiplying 100 matrices.

  • 相关阅读:
    JavaScript做定时器
    当前时间到固定日期的天数,如:在页面弹出显示到到2015年5月1日还有多少天
    使用Date日期对象来完成,在页面上根据不同时间显示不同的问候语,如:早上好,中午好,下午好,晚上好等信息
    JavaScript中遍历数组中元素的两种方法
    设计程序,单击【随机数】按钮,使用Math对象的random函数产生一个0-100之间(含0-100)的随机整数,并在对话框中显示,如下图。单击【计算】按钮,计算该随机数的平方、平方根和自然对数,保留两位小数,并在对话框中显示,如下图。
    JavaScript中实现四舍五入后保留小数的方法
    打印函数如何适应不同的打印机
    在MFC中改变控件的TAB顺序
    LPCTSTR —— 摘自百度百科
    vector使用注意事项
  • 原文地址:https://www.cnblogs.com/rsapaper/p/5931320.html
Copyright © 2011-2022 走看看