A. Thickest Burger
大数 × 2 + 小数
#include <cstdio>
#include <algorithm>
using namespace std;
int T;
int A,B;
int main()
{
scanf("%d",&T);
for(int t=1; t<=T; t++)
{
scanf("%d%d",&A,&B);
if(A<B) swap(A,B);
printf("%d
",A*2+B);
}
return 0;
}
B. Relative atomic mass
给定一个分子式,只包含 H C O 三种,求相对分子质量。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=15;
char s[maxn];
int T, ans = 0;
int main()
{
scanf("%d",&T);
for(int t=1; t<=T; t++)
{
ans=0;
scanf("%s",s);
int n=strlen(s);
for(int i=0; i<n; i++)
{
if(s[i]=='H') ans++;
if(s[i]=='C') ans+=12;
if(s[i]=='O') ans+=16;
}
printf("%d
",ans);
}
return 0;
}
C. Recursive sequence
矩阵快速幂
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MOD = 2147493647;
int a, b;
LL C[7][7];
void mut(LL A[][7], LL B[][7]) {
memset(C, 0, sizeof(C));
for(int i = 0; i < 7; ++i)
for(int j = 0; j < 7; ++j)
for(int k = 0; k < 7; ++k)
C[i][j] = ( C[i][j] + A[i][k] * B[k][j] ) % MOD;
memcpy(A, C, sizeof(C));
}
LL qpow(int n) {
LL aa[7][7] = {{1,2,1,0,0,0,0},{1,0,0,0,0,0,0},{0,0,1,4,6,4,1},{0,0,0,1,3,3,1},{0,0,0,0,1,2,1},{0,0,0,0,0,1,1},{0,0,0,0,0,0,1}};
LL ans[7][7] = {{1,0,0,0,0,0,0},{0,1,0,0,0,0,0},{0,0,1,0,0,0,0},{0,0,0,1,0,0,0},{0,0,0,0,1,0,0},{0,0,0,0,0,1,0},{0,0,0,0,0,0,1}};
while(n) {
if(n&1) mut(ans, aa);
mut(aa,aa);
n>>=1;
}
LL res = ans[0][0] * b % MOD + ans[0][1] * a % MOD + ans[0][2] * 3 * 3 * 3 * 3 % MOD;
res = res + ans[0][3] * 3 * 3 * 3 % MOD + ans[0][4] * 3 * 3 % MOD + ans[0][5] * 3 % MOD;
res = ( res + ans[0][6] ) % MOD;
return res;
}
int main() {
int T;
scanf("%d", &T);
while(T--) {
int n;
scanf("%d%d%d", &n, &a, &b);
if(n == 1) {
printf("%d
",a);
continue;
}
LL ans = qpow(n-2);
printf("%lld
", ans);
}
return 0;
}
D. Winning an Auction
博弈
E. Counting Cliques
爆搜。vector[i] 记录与 i 有边且编号大于 i 的点。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
const int maxn = 100 + 10;
const int maxm = 1000 + 100;
int n, m, k;
vector<int> v[maxn];
int from[maxm], to[maxm];
int G[maxn][maxn];
int d[maxn], node[maxn];
int tot, ans;
void DFS(int x, int start)
{
if (tot == k) { ++ans; return; }
int sz = v[x].size();
for (int i = start; i < sz; i++)
{
int flag = 0;
for (int j = 2; j <= tot; j++)
if (!G[ node[j] ][ v[x][i] ]) { flag = 1; break; }
if (flag) continue;
node[++tot] = v[x][i], DFS(x, i+1), --tot;
}
}
int main()
{
int t;
scanf("%d", &t);
for (int ca = 1; ca <= t; ca++)
{
memset(d, 0, sizeof(d));
for (int i = 1; i <= n; i++)
{
for (int j = i+1; j <= n; j++) G[i][j] = G[j][i] = 0;
v[i].clear();
}
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m; i++)
{
scanf("%d%d", &from[i], &to[i]);
d[ from[i] ]++, d[ to[i] ]++;
}
for (int i = 1; i <= m; i++)
if (d[ from[i] ] >= k-1 && d[ to[i] ] >= k-1)
{
if (from[i] < to[i]) v[ from[i] ].push_back(to[i]);
else v[ to[i] ].push_back(from[i]);
G[ from[i] ][ to[i] ] = G[ to[i] ][ from[i] ] = 1;
}
ans = 0;
for (int i = 1; i <= n; i++)
{
tot = 1, node[1] = i;
DFS(i, 0);
}
printf("%d
", ans);
}
}
F. Similar Rotations
G. Do not pour out
H. Guessing the Dice Roll
I. The Elder
J. Query on a graph
K. New Signal Decomposition
L. A Random Turn Connection Game
M. Subsequence