zoukankan      html  css  js  c++  java
  • 基于贝叶斯模型的显著性检测

         VISUAL SALIENCY DETECTION BASED ON BAYESIAN MODEL 。Yulin Xie, Huchuan Lu.2011 IEEE

          这篇文章有两方面的有点:第一,采用粗到细的策略得到粗略显著区域的位置。

                                                    第二,通过使用贝叶斯框架计算先验概率得到显著图。

       

          文章的大体流程:检测显著区域的角点 ---> 用凸包将显著点包围起来,得到粗略的显著图--->计算贝叶斯理论中的后验概率计算显著值得到显著图.

          

            1)检测显著区域的角点:采用颜色增强Harris角点作为显著点。(显著点提供了大致的显著区域)。

            2)用凸包将显著点包围起来,得到粗略的显著图:1)之后消除图像边界附近的显著点,采用凸包将圈住剩下的显著点(颜色增强Harris点通常会把显著区域聚集在一起,凸包会把大部分的大部分的显著区域包含,当然会包含一部分的背景量子)。

            3)先验分布:实现先验分布采用超像素,因为超像素可以保存物体的边界并且获取具有相同特征的像素,所以选择超像素而不是单独的像素进行处理。

           4)消除凸包内的噪音:采用k-means clustering

  • 相关阅读:
    ajax
    异步加载js的方法
    node的特点,优缺点及应用场景
    ajax面试题
    jQuery实现手风琴效果
    jQuery简介
    原型
    string 对象属性和方法
    函数声明和函数表达式
    JavaScript 基本语法
  • 原文地址:https://www.cnblogs.com/saliency/p/3582913.html
Copyright © 2011-2022 走看看