zoukankan      html  css  js  c++  java
  • Pairs Forming LCM (LightOJ

    Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)

    标签: 入门讲座题解 数论


    题目描述

    Find the result of the following code:

    long long pairsFormLCM( int n ) {
        long long res = 0;
        for( int i = 1; i <= n; i++ )
            for( int j = i; j <= n; j++ )
               if( lcm(i, j) == n ) res++; // lcm means least common multiple
        return res;
    }
    

    A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs (i, j) for which lcm(i, j) = n and (i ≤ j).
    Input

    Input starts with an integer T (≤ 200), denoting the number of test cases.
    
    Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).
    

    Output

    For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.
    

    Sample Input

    15
    
    2
    
    3
    
    4
    
    6
    
    8
    
    10
    
    12
    
    15
    
    18
    
    20
    
    21
    
    24
    
    25
    
    27
    
    29
    

    Sample Output

    Case 1: 2
    
    Case 2: 2
    
    Case 3: 3
    
    Case 4: 5
    
    Case 5: 4
    
    Case 6: 5
    
    Case 7: 8
    
    Case 8: 5
    
    Case 9: 8
    
    Case 10: 8
    
    Case 11: 5
    
    Case 12: 11
    
    Case 13: 3
    
    Case 14: 4
    
    Case 15: 2
    

    题意

    给定(n)
    (sum_{i = 1}^{n} sum_{j = i}^{n} [lcm(i, j) = n])的值。


    解析


    通过代码

    /*
    Problem
        LightOJ - 1236
    Status
    	Accepted
    Time
    	410ms
    Memory
    	19664kB
    Length
    	1299
    Lang
    	C++
    Submitted
    	2019-11-25 15:30:08
    Shared
    	
    RemoteRunId
    	1640611
    */
    
    #include <bits/stdc++.h>
    using namespace std;
    
    typedef long long ll;
    const int MAXN = 1e7 + 50;
    
    bool vis[MAXN];
    int prime[MAXN / 10], p[MAXN / 10], m = 0, cnt;
    
    void fill_0()
    {
        for(int i = 1; i <= cnt; i ++)
            p[i] = 0;
        return;
    }
    void get_prime()                //线性筛,筛出1e7以内全部质数.
    {
        vis[1] = 1;
    
        for(int i = 2; i <= int(1e7 + 5); i ++){
            if(!vis[i])
                prime[++ m] = i;
    
            for(int j = 1; j <= m && i * prime[j] <= int(1e7 + 5); j ++){
                vis[i * prime[j]] = 1;
    
                if(i % prime[j] == 0)
                    break;
            }
        }
    
        return;
    }
    void get_fact(ll x)
    {
        fill_0();           //将p数组归零.
        cnt = 0;
        for(int i = 1; i <= m && 1ll * prime[i] * prime[i] <= x; i ++){ //以下求得一个数的质因数分解每个质数的幂次.
            if(x % prime[i] == 0){
    
                cnt ++;
                while(x % prime[i] == 0){
                
                    p[cnt] ++;
                    x /= prime[i];
                    
                }
    
            }
        }
    
        if(x != 1)
            p[++ cnt] = 1;
    
        return;
    }
    
    ll work()
    {
        ll res = 1;
    
        for(int i = 1; i <= cnt; i ++)
            res *= 1ll * (2 * p[i] + 1);
    
        return (res + 1) >> 1;
    }
    int main()
    {
        get_prime();
        
        int times, _case = 0;
    
        scanf("%d", &times);
    
        while(times --){
    
            ll x;
            scanf("%lld", &x);
    
            get_fact(x);
    
            printf("Case %d: %lld
    ", ++ _case, work());
        }
    
        return 0;
    }
    
    

  • 相关阅读:
    Marshal's Confusion III(快速幂)
    两种筛素数的方法
    B
    HDU 1563 【Find your present!】
    HDU 2044【一只小蜜蜂】
    HDU 2153 仙人球的残影
    NYOJ 49 【开心的小明】
    最小的回文数
    Google Code Jam 2014资格赛【Problem A. Magic Trick】
    携程编程大赛 (预赛第二场)第一题【剪刀石头布】
  • 原文地址:https://www.cnblogs.com/satchelpp/p/11941165.html
Copyright © 2011-2022 走看看