zoukankan      html  css  js  c++  java
  • 【小知识】证明 $1$ 到 $n$ 的立方和公式

    • scb 发明了小学奥数(确信)

    Formula

      (sumlimits_{i=1}^n i^3 = (sumlimits_{i=1}^n i)^2)

    Provement

      构造一个矩阵 (a) $$1space 2space 3space 4space 5 2space 4space 6space 8space 10 3space 6space 9space 12space 15 4space 8space 12space 16space 20 5space 10space 15space 20space 25$$
      (这个矩阵还可以往右下无限延伸,这里限于篇幅就写这么多)
      对于左上角 (n imes n) 个数的和,有两种不同的求法。两种求法对应了标题中的等号两侧。

      首先有反 L 字形求和公式:$$egin{align} &sumlimits_{i=1}^x a_{x,i} + sumlimits_{i=1}^{x-1} a_{i,x} onumber = &x imes [1+2+3+cdots +x+(x-1)+(x-2)+cdots +1] onumber = &x imes x^2 onumber = &x^3 onumber end{align}$$
      故左上角 (n imes n) 个数的和就是 (sumlimits_{x=1}^n x^3)

      然后有一行求和公式,即第 (i) 行的和为 (i imes (1+2+cdots +n))
      故左上角 (n imes n) 个数的和也是 ((1+2+cdots +n) imes (1+2+cdots +n) = (sumlimits_{i=1}^n i)^2)

      Q.E.D

  • 相关阅读:
    ubuntu 开启ssh
    ubuntu 电源管理
    吸血鬼数
    java泛型
    分布式数据库主键id生成策略
    使用SSH工具连接到MySQL
    MySQL命令行基本命令操作
    bootstrap图片轮播
    java设计模式----工厂模式
    java设计模式----享元模式
  • 原文地址:https://www.cnblogs.com/scx2015noip-as-php/p/11646055.html
Copyright © 2011-2022 走看看