zoukankan      html  css  js  c++  java
  • Print Article

    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree. One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost
    M is a const number. Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5 5 5 9 5 7 5
     
    Sample Output
    230
     
    Author
    Xnozero
     
    Source
     
    Recommend
    zhengfeng
    ***************************************************************************************
    讲解的很清楚,有图又推导,不过看了很长时间才看懂,关键求斜率推导式
    ***************************************************************************************
     1 #include<iostream>
     2 #include<cstring>
     3 #include<string>
     4 #include<cstdio>
     5 #include<cmath>
     6 #define  L  long long
     7 using namespace std;
     8 L dp[500005];
     9 L sum[500005];
    10 int  q[500005];
    11 int n,m,i,j;
    12 void  init()
    13 {
    14     for(i=1;i<=n;i++)
    15      cin>>sum[i];
    16     for(i=2;i<=n;i++)
    17       sum[i]+=sum[i-1];
    18 
    19 }
    20 L getdp(int i,int j)//求dp
    21     {
    22         return dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
    23     }
    24 L  getup(int j,int k)//分子
    25  {
    26      return   (dp[j]+sum[j]*sum[j])-(dp[k]+sum[k]*sum[k]);
    27  }
    28 L getdown(int j,int k)//分母
    29   {
    30       return  2*(sum[j]-sum[k]);
    31   }
    32 int main()
    33 {
    34    while(scanf("%d %d",&n,&m)!=EOF)
    35     {
    36         memset(dp,0,sizeof(dp));
    37         memset(sum,0,sizeof(sum));
    38         memset(q,0,sizeof(q));
    39         init();
    40       int head=0;
    41     int tail=0;
    42      q[0]=dp[0]=0;
    43      tail++;
    44      for(i=1;i<=n;i++)
    45       {
    46           while(head+1<tail&&getup(q[head+1],q[head])<=sum[i]*getdown(q[head+1],q[head]))
    47             head++;
    48             dp[i]=getdp(i,q[head]);
    49           while(head+1<tail&&getup(i,q[tail-1])*getdown(q[tail-1],q[tail-2])<=getup(q[tail-1],q[tail-2])*getdown(i,q[tail-1]))//删去一定不满足条件的点
    50             tail--;
    51           q[tail++]=i;
    52       }
    53 
    54   cout<<dp[n]<<endl;
    55 }
    56   return 0;
    57 
    58 
    59 
    60 }
    View Code
  • 相关阅读:
    sql语句中where后边的哪些条件会使索引失效 SQL语句优化
    jvm 判断对象死亡
    mysql数据库优化概述详解
    java集合框架详解
    jvm 图形化工具之jconsole
    java io框架详解
    多台Linux之间文件共享
    二 redis的安装启动
    jvm 线上命令工具
    java 线程6种状态的转换
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3251238.html
Copyright © 2011-2022 走看看