zoukankan      html  css  js  c++  java
  • Print Article

    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree. One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost
    M is a const number. Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5 5 5 9 5 7 5
     
    Sample Output
    230
     
    Author
    Xnozero
     
    Source
     
    Recommend
    zhengfeng
    ***************************************************************************************
    讲解的很清楚,有图又推导,不过看了很长时间才看懂,关键求斜率推导式
    ***************************************************************************************
     1 #include<iostream>
     2 #include<cstring>
     3 #include<string>
     4 #include<cstdio>
     5 #include<cmath>
     6 #define  L  long long
     7 using namespace std;
     8 L dp[500005];
     9 L sum[500005];
    10 int  q[500005];
    11 int n,m,i,j;
    12 void  init()
    13 {
    14     for(i=1;i<=n;i++)
    15      cin>>sum[i];
    16     for(i=2;i<=n;i++)
    17       sum[i]+=sum[i-1];
    18 
    19 }
    20 L getdp(int i,int j)//求dp
    21     {
    22         return dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
    23     }
    24 L  getup(int j,int k)//分子
    25  {
    26      return   (dp[j]+sum[j]*sum[j])-(dp[k]+sum[k]*sum[k]);
    27  }
    28 L getdown(int j,int k)//分母
    29   {
    30       return  2*(sum[j]-sum[k]);
    31   }
    32 int main()
    33 {
    34    while(scanf("%d %d",&n,&m)!=EOF)
    35     {
    36         memset(dp,0,sizeof(dp));
    37         memset(sum,0,sizeof(sum));
    38         memset(q,0,sizeof(q));
    39         init();
    40       int head=0;
    41     int tail=0;
    42      q[0]=dp[0]=0;
    43      tail++;
    44      for(i=1;i<=n;i++)
    45       {
    46           while(head+1<tail&&getup(q[head+1],q[head])<=sum[i]*getdown(q[head+1],q[head]))
    47             head++;
    48             dp[i]=getdp(i,q[head]);
    49           while(head+1<tail&&getup(i,q[tail-1])*getdown(q[tail-1],q[tail-2])<=getup(q[tail-1],q[tail-2])*getdown(i,q[tail-1]))//删去一定不满足条件的点
    50             tail--;
    51           q[tail++]=i;
    52       }
    53 
    54   cout<<dp[n]<<endl;
    55 }
    56   return 0;
    57 
    58 
    59 
    60 }
    View Code
  • 相关阅读:
    博弈论专题(持续更新)
    数论专题(持续更新)
    树的遍历专题(持续更新)
    直线折线分割平面问题
    字典树模板 HDU1251
    差分数组——面对大数据的处理
    最短路——dijkstra算法
    并查集与最小生成树
    KMP的初步认识及题目分析
    Codeforces Round#636(Div.3) D题 差分数组
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3251238.html
Copyright © 2011-2022 走看看