zoukankan      html  css  js  c++  java
  • C Looooops 同余方程(扩展欧几里得算法)

    Problem Description
    A Compiler Mystery: We are given a C-language style for loop of type 
    for (variable = A; variable != B; variable += C)
    
    statement;

    I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k

     

    Input
    The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop. 

    The input is finished by a line containing four zeros. 
     

    Output
    The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 
     

    Sample Input
    3 3 2 16 3 7 2 16 7 3 2 16 3 4 2 16 0 0 0 0
     

    Sample Output
    0 2 32766 FOREVER
    ***************************************************************************************************************************
    ***************************************************************************************************************************
     1 #include<iostream>
     2 #include<string>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<cstdio>
     6 using namespace std;
     7 typedef  __int64  LL;
     8 LL A,B,C,k;
     9 //欧几里得算法
    10 LL gcd(LL a,LL b)
    11  {
    12      LL c;
    13      if(a<b)
    14      {
    15          c=a;
    16          a=b;
    17          b=c;
    18      }
    19      while(b)
    20      {
    21          c=b;
    22          b=a%b;
    23          a=c;
    24      }
    25      return a;
    26  }
    27  //扩展欧几里得算法
    28  LL  extend_gcd(LL a,LL b,LL &x,LL &y)
    29  {
    30      LL ans,t;
    31      if(b==0)
    32      {
    33          x=1;
    34          y=0;
    35          return a;
    36      }
    37      else
    38      {
    39          ans=extend_gcd(b,a%b,x,y);
    40          t=x;
    41          x=y;
    42          y=t-(a/b)*y;
    43      }
    44      return ans;
    45  }
    46  int main()
    47  {
    48      LL a,b,c,d,x,y,ans;
    49      while(scanf("%I64d%I64d%I64d%I64d",&A,&B,&C,&k))
    50      {
    51          if(A+B+C+k==0)
    52           break;
    53          a=C;
    54          b=pow(2,k);
    55          c=B-A;
    56          d=extend_gcd(a,b,x,y);
    57          if(c%d)
    58          {
    59              printf("FOREVER
    ");
    60              continue;
    61          }
    62          ans=(((c*x/d)%b)+b)%(b/d);
    63          if(ans<0)
    64             ans+=(b/d);
    65          printf("%I64d
    ",ans);
    66      }
    67      return 0;
    68  }
    View Code

  • 相关阅读:
    走进__proto__属性,看ie是否支持它,谁又来给他归宿
    如何安装zip格式的MySQL
    博客初心源于前端攻城狮
    Day 1: How to install jedi/codeintel plugin for sublime on Linux
    关于拓扑排序的一些想法
    POJ1061 青蛙的约会 __一维世界的爱情
    缩步查找法——一种新的查找算法
    HDU3371 Connect the Cities
    HDU1598 find the most comfortable road
    codeforces 349 div2.c
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3381808.html
Copyright © 2011-2022 走看看