zoukankan      html  css  js  c++  java
  • C Looooops 同余方程(扩展欧几里得算法)

    Problem Description
    A Compiler Mystery: We are given a C-language style for loop of type 
    for (variable = A; variable != B; variable += C)
    
    statement;

    I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k

     

    Input
    The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop. 

    The input is finished by a line containing four zeros. 
     

    Output
    The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 
     

    Sample Input
    3 3 2 16 3 7 2 16 7 3 2 16 3 4 2 16 0 0 0 0
     

    Sample Output
    0 2 32766 FOREVER
    ***************************************************************************************************************************
    ***************************************************************************************************************************
     1 #include<iostream>
     2 #include<string>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<cstdio>
     6 using namespace std;
     7 typedef  __int64  LL;
     8 LL A,B,C,k;
     9 //欧几里得算法
    10 LL gcd(LL a,LL b)
    11  {
    12      LL c;
    13      if(a<b)
    14      {
    15          c=a;
    16          a=b;
    17          b=c;
    18      }
    19      while(b)
    20      {
    21          c=b;
    22          b=a%b;
    23          a=c;
    24      }
    25      return a;
    26  }
    27  //扩展欧几里得算法
    28  LL  extend_gcd(LL a,LL b,LL &x,LL &y)
    29  {
    30      LL ans,t;
    31      if(b==0)
    32      {
    33          x=1;
    34          y=0;
    35          return a;
    36      }
    37      else
    38      {
    39          ans=extend_gcd(b,a%b,x,y);
    40          t=x;
    41          x=y;
    42          y=t-(a/b)*y;
    43      }
    44      return ans;
    45  }
    46  int main()
    47  {
    48      LL a,b,c,d,x,y,ans;
    49      while(scanf("%I64d%I64d%I64d%I64d",&A,&B,&C,&k))
    50      {
    51          if(A+B+C+k==0)
    52           break;
    53          a=C;
    54          b=pow(2,k);
    55          c=B-A;
    56          d=extend_gcd(a,b,x,y);
    57          if(c%d)
    58          {
    59              printf("FOREVER
    ");
    60              continue;
    61          }
    62          ans=(((c*x/d)%b)+b)%(b/d);
    63          if(ans<0)
    64             ans+=(b/d);
    65          printf("%I64d
    ",ans);
    66      }
    67      return 0;
    68  }
    View Code

  • 相关阅读:
    数据结构与算法复习(三)归并排序
    编程练习-扑克牌
    编程练习-字符串处理及简单排序
    spi驱动框架学习记录
    mt7628网口引脚设置成通用GPIO的方法
    数据结构与算法复习(二)插入排序
    数据结构与算法复习(一)快速排序
    基于input子系统的按键驱动程序
    基于设备树编写按键中断驱动程序
    Linux读写权限整理 --chmod
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3381808.html
Copyright © 2011-2022 走看看