zoukankan      html  css  js  c++  java
  • C Looooops 同余方程(扩展欧几里得算法)

    Problem Description
    A Compiler Mystery: We are given a C-language style for loop of type 
    for (variable = A; variable != B; variable += C)
    
    statement;

    I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k

     

    Input
    The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop. 

    The input is finished by a line containing four zeros. 
     

    Output
    The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 
     

    Sample Input
    3 3 2 16 3 7 2 16 7 3 2 16 3 4 2 16 0 0 0 0
     

    Sample Output
    0 2 32766 FOREVER
    ***************************************************************************************************************************
    ***************************************************************************************************************************
     1 #include<iostream>
     2 #include<string>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<cstdio>
     6 using namespace std;
     7 typedef  __int64  LL;
     8 LL A,B,C,k;
     9 //欧几里得算法
    10 LL gcd(LL a,LL b)
    11  {
    12      LL c;
    13      if(a<b)
    14      {
    15          c=a;
    16          a=b;
    17          b=c;
    18      }
    19      while(b)
    20      {
    21          c=b;
    22          b=a%b;
    23          a=c;
    24      }
    25      return a;
    26  }
    27  //扩展欧几里得算法
    28  LL  extend_gcd(LL a,LL b,LL &x,LL &y)
    29  {
    30      LL ans,t;
    31      if(b==0)
    32      {
    33          x=1;
    34          y=0;
    35          return a;
    36      }
    37      else
    38      {
    39          ans=extend_gcd(b,a%b,x,y);
    40          t=x;
    41          x=y;
    42          y=t-(a/b)*y;
    43      }
    44      return ans;
    45  }
    46  int main()
    47  {
    48      LL a,b,c,d,x,y,ans;
    49      while(scanf("%I64d%I64d%I64d%I64d",&A,&B,&C,&k))
    50      {
    51          if(A+B+C+k==0)
    52           break;
    53          a=C;
    54          b=pow(2,k);
    55          c=B-A;
    56          d=extend_gcd(a,b,x,y);
    57          if(c%d)
    58          {
    59              printf("FOREVER
    ");
    60              continue;
    61          }
    62          ans=(((c*x/d)%b)+b)%(b/d);
    63          if(ans<0)
    64             ans+=(b/d);
    65          printf("%I64d
    ",ans);
    66      }
    67      return 0;
    68  }
    View Code

  • 相关阅读:
    flex设置成1和auto有什么区别
    在SUBLIME TEXT中安装SUBLIMELINTER进行JS&CSS代码校验
    gulp教程之gulp-less
    sublime注释插件与javascript注释规范
    移动端尺寸基础知识
    webpack入门教程
    IO中同步、异步与阻塞、非阻塞的区别
    Node.js的线程和进程
    Cocos2d-x 3.0中 物理碰撞检測中onContactBegin回调函数不响应问题
    hdu 1789 Doing Homework again 贪心
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3381808.html
Copyright © 2011-2022 走看看