zoukankan      html  css  js  c++  java
  • Balanced Lineup RMQ 中的ST算法(第一次做)

    Problem Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

     
    Input
    Line 1: Two space-separated integers, N and Q.
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.
     
    Output
    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.
     
    Sample Input
    6 3 1 7 3 4 2 5 1 5 4 6 2 2
     
    Sample Output
    6 3 0
    ***********************************************************************************************************************************
    dp[i][j]表示在区间(i,i+2^j-1)中所取得最值;
    其中求最值时也有优点dp,每次把最值保存在dp数组中
    ST算法最主要的优点是查询的时候费时为o(1);
    ***********************************************************************************************************************************
     1 #include<iostream>
     2 #include<string>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<queue>
     6 #include<stack>
     7 #include<map>
     8 #include<cstdio>
     9 using namespace std;
    10 int cow[51001];
    11 int n,m,p;
    12 int dpmax[51001][51],dpmin[51001][51];
    13 void maxmp(int n)
    14 {
    15     for(int it=1; it<=n; it++)
    16         dpmax[it][0]=cow[it];
    17     for(int it=1; it<=(log((double)n)/log(2.0)); it++)
    18         for(int jt=1; jt+(1<<it)-1<=n; jt++)
    19             dpmax[jt][it]=max(dpmax[jt][it-1],dpmax[jt+(1<<(it-1))][it-1]);
    20 }
    21 
    22 void minmp(int n)
    23 {
    24     for(int it=1; it<=n; it++)
    25         dpmin[it][0]=cow[it];
    26     for(int it=1; it<=(log((double)n)/log(2.0)); it++)
    27         for(int jt=1; jt+(1<<it)-1<=n; jt++)
    28             dpmin[jt][it]=min(dpmin[jt][it-1],dpmin[jt+(1<<(it-1))][it-1]);
    29 }
    30 
    31 int querymax(int s,int v)
    32 {
    33     int k=(int)((log((double)(v-s+1))/log(2.0)));
    34     return max(dpmax[s][k],dpmax[v-(1<<k)+1][k]);
    35 }
    36 
    37 int querymin(int s,int v)
    38 {
    39     int k=(int)((log((double)(v-s+1))/log(2.0)));
    40     return min(dpmin[s][k],dpmin[v-(1<<k)+1][k]);
    41 }
    42 
    43 int main()
    44 {
    45 
    46     while(~scanf("%d %d",&n,&p))
    47     {
    48         for(int i = 1 ; i <= n ; ++i)
    49             scanf("%d",&cow[i]);
    50 
    51         maxmp(n);
    52         minmp(n);
    53         while(p--)
    54         {
    55             int s,v;
    56             scanf("%d%d",&s,&v);
    57             printf("%d
    ",querymax(s,v)-querymin(s,v));
    58         }
    59     }
    60     return 0;
    61 
    62 }
    View Code
  • 相关阅读:
    Ubuntu Java环境变量配置
    Ubuntu 获得超级用户权限
    ubuntu 修改主机名
    NGSQC toolkit
    MySQL 常用命令
    Yii的事件和行为的区别和应用
    YII使用PHPExcel导入Excel文件的方法
    Yii: 扩展CGridView增加导出CSV功能
    YII中使用SOAP一定要注意的一些东西
    Yii 多表关联relations
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3483738.html
Copyright © 2011-2022 走看看