zoukankan      html  css  js  c++  java
  • Balanced Lineup RMQ 中的ST算法(第一次做)

    Problem Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

     
    Input
    Line 1: Two space-separated integers, N and Q.
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.
     
    Output
    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.
     
    Sample Input
    6 3 1 7 3 4 2 5 1 5 4 6 2 2
     
    Sample Output
    6 3 0
    ***********************************************************************************************************************************
    dp[i][j]表示在区间(i,i+2^j-1)中所取得最值;
    其中求最值时也有优点dp,每次把最值保存在dp数组中
    ST算法最主要的优点是查询的时候费时为o(1);
    ***********************************************************************************************************************************
     1 #include<iostream>
     2 #include<string>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<queue>
     6 #include<stack>
     7 #include<map>
     8 #include<cstdio>
     9 using namespace std;
    10 int cow[51001];
    11 int n,m,p;
    12 int dpmax[51001][51],dpmin[51001][51];
    13 void maxmp(int n)
    14 {
    15     for(int it=1; it<=n; it++)
    16         dpmax[it][0]=cow[it];
    17     for(int it=1; it<=(log((double)n)/log(2.0)); it++)
    18         for(int jt=1; jt+(1<<it)-1<=n; jt++)
    19             dpmax[jt][it]=max(dpmax[jt][it-1],dpmax[jt+(1<<(it-1))][it-1]);
    20 }
    21 
    22 void minmp(int n)
    23 {
    24     for(int it=1; it<=n; it++)
    25         dpmin[it][0]=cow[it];
    26     for(int it=1; it<=(log((double)n)/log(2.0)); it++)
    27         for(int jt=1; jt+(1<<it)-1<=n; jt++)
    28             dpmin[jt][it]=min(dpmin[jt][it-1],dpmin[jt+(1<<(it-1))][it-1]);
    29 }
    30 
    31 int querymax(int s,int v)
    32 {
    33     int k=(int)((log((double)(v-s+1))/log(2.0)));
    34     return max(dpmax[s][k],dpmax[v-(1<<k)+1][k]);
    35 }
    36 
    37 int querymin(int s,int v)
    38 {
    39     int k=(int)((log((double)(v-s+1))/log(2.0)));
    40     return min(dpmin[s][k],dpmin[v-(1<<k)+1][k]);
    41 }
    42 
    43 int main()
    44 {
    45 
    46     while(~scanf("%d %d",&n,&p))
    47     {
    48         for(int i = 1 ; i <= n ; ++i)
    49             scanf("%d",&cow[i]);
    50 
    51         maxmp(n);
    52         minmp(n);
    53         while(p--)
    54         {
    55             int s,v;
    56             scanf("%d%d",&s,&v);
    57             printf("%d
    ",querymax(s,v)-querymin(s,v));
    58         }
    59     }
    60     return 0;
    61 
    62 }
    View Code
  • 相关阅读:
    leetcode 1 两数之和
    leetcode 486 预测赢家
    leetcode 121 买卖股票的最佳时机
    leetcode 5 最长回文子串
    个人作业——软件工程实践总结作业
    个人作业——软件产品案例分析
    软件工程实践2017 个人技术博客
    软件工程实践2017结对项目——第二次作业
    软件工程实践2017结对项目——第一次作业
    课堂笔记(六)
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3483738.html
Copyright © 2011-2022 走看看