zoukankan      html  css  js  c++  java
  • Balanced Lineup RMQ 中的ST算法(第一次做)

    Problem Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

     
    Input
    Line 1: Two space-separated integers, N and Q.
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.
     
    Output
    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.
     
    Sample Input
    6 3 1 7 3 4 2 5 1 5 4 6 2 2
     
    Sample Output
    6 3 0
    ***********************************************************************************************************************************
    dp[i][j]表示在区间(i,i+2^j-1)中所取得最值;
    其中求最值时也有优点dp,每次把最值保存在dp数组中
    ST算法最主要的优点是查询的时候费时为o(1);
    ***********************************************************************************************************************************
     1 #include<iostream>
     2 #include<string>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<queue>
     6 #include<stack>
     7 #include<map>
     8 #include<cstdio>
     9 using namespace std;
    10 int cow[51001];
    11 int n,m,p;
    12 int dpmax[51001][51],dpmin[51001][51];
    13 void maxmp(int n)
    14 {
    15     for(int it=1; it<=n; it++)
    16         dpmax[it][0]=cow[it];
    17     for(int it=1; it<=(log((double)n)/log(2.0)); it++)
    18         for(int jt=1; jt+(1<<it)-1<=n; jt++)
    19             dpmax[jt][it]=max(dpmax[jt][it-1],dpmax[jt+(1<<(it-1))][it-1]);
    20 }
    21 
    22 void minmp(int n)
    23 {
    24     for(int it=1; it<=n; it++)
    25         dpmin[it][0]=cow[it];
    26     for(int it=1; it<=(log((double)n)/log(2.0)); it++)
    27         for(int jt=1; jt+(1<<it)-1<=n; jt++)
    28             dpmin[jt][it]=min(dpmin[jt][it-1],dpmin[jt+(1<<(it-1))][it-1]);
    29 }
    30 
    31 int querymax(int s,int v)
    32 {
    33     int k=(int)((log((double)(v-s+1))/log(2.0)));
    34     return max(dpmax[s][k],dpmax[v-(1<<k)+1][k]);
    35 }
    36 
    37 int querymin(int s,int v)
    38 {
    39     int k=(int)((log((double)(v-s+1))/log(2.0)));
    40     return min(dpmin[s][k],dpmin[v-(1<<k)+1][k]);
    41 }
    42 
    43 int main()
    44 {
    45 
    46     while(~scanf("%d %d",&n,&p))
    47     {
    48         for(int i = 1 ; i <= n ; ++i)
    49             scanf("%d",&cow[i]);
    50 
    51         maxmp(n);
    52         minmp(n);
    53         while(p--)
    54         {
    55             int s,v;
    56             scanf("%d%d",&s,&v);
    57             printf("%d
    ",querymax(s,v)-querymin(s,v));
    58         }
    59     }
    60     return 0;
    61 
    62 }
    View Code
  • 相关阅读:
    洛谷P1661 扩散
    Vijos1056 图形面积
    Python爬取猪肉价格网并获取Json数据
    C#中巧用Lambda表达式实现对象list进行截取
    Winform中在ZedGraph中最多可以添加多少条曲线
    Nginx配置实例-动静分离实例:搭建静态资源服务器
    解决pip使用异常No module named 'pip'
    C#在循环中使用Random时生成的随机数相同的解决办法
    Winform中自定义ZedGraph右键复制成功后的提示
    C#中巧用Lambda进行数据的筛选查询等处理
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3483738.html
Copyright © 2011-2022 走看看