zoukankan      html  css  js  c++  java
  • 【leetcode】1039. Minimum Score Triangulation of Polygon

    题目如下:

    Given N, consider a convex N-sided polygon with vertices labelled A[0], A[i], ..., A[N-1] in clockwise order.

    Suppose you triangulate the polygon into N-2 triangles.  For each triangle, the value of that triangle is the product of the labels of the vertices, and the total score of the triangulation is the sum of these values over all N-2 triangles in the triangulation.

    Return the smallest possible total score that you can achieve with some triangulation of the polygon.

    Example 1:

    Input: [1,2,3]
    Output: 6
    Explanation: The polygon is already triangulated, and the score of the only triangle is 6.
    

    Example 2:

    Input: [3,7,4,5]
    Output: 144
    Explanation: There are two triangulations, with possible scores: 3*7*5 + 4*5*7 = 245, or 3*4*5 + 3*4*7 = 144.  The minimum score 
    is 144.

    Example 3:

    Input: [1,3,1,4,1,5]
    Output: 13
    Explanation: The minimum score triangulation has score 1*1*3 + 1*1*4 + 1*1*5 + 1*1*1 = 13.
    

    Note:

    1. 3 <= A.length <= 50
    2. 1 <= A[i] <= 100

    解题思路:这里推荐一本书《趣学算法》,里面有几个专题,讲解也非常有意思。本题对应书中的4.7章:最优三角剖分,解答如下图。

    代码如下:

    class Solution(object):
        def minScoreTriangulation(self, A):
            """
            :type A: List[int]
            :rtype: int
            """
            dp = []
            for i in A:
                dp.append([0] * len(A))
            # dp[i][j] = dp[i][k] + dp[k+1][j] + A[i]+A[j]+A[k]
            for i in range(len(A)-3,-1,-1):
                for j in range(i+2,len(A)):
                    for k in range(i+1,j):
                        if dp[i][j] == 0 or dp[i][j] > dp[i][k] + dp[k][j] + A[i]*A[j]*A[k]:
                            dp[i][j] = dp[i][k] + dp[k][j] + A[i]*A[j]*A[k]
            #print dp
            return dp[0][-1]
  • 相关阅读:
    Android新手引导库推荐
    windbg 常调用指令
    通过Hook NtOpenProcess 函数实现反调试
    PE文件
    消息机制
    软件调试
    异常(2) --- 编译器对于SEH异常的拓展
    异常(1)
    等待对象
    进程与线程
  • 原文地址:https://www.cnblogs.com/seyjs/p/10955757.html
Copyright © 2011-2022 走看看