zoukankan      html  css  js  c++  java
  • 【leetcode】1039. Minimum Score Triangulation of Polygon

    题目如下:

    Given N, consider a convex N-sided polygon with vertices labelled A[0], A[i], ..., A[N-1] in clockwise order.

    Suppose you triangulate the polygon into N-2 triangles.  For each triangle, the value of that triangle is the product of the labels of the vertices, and the total score of the triangulation is the sum of these values over all N-2 triangles in the triangulation.

    Return the smallest possible total score that you can achieve with some triangulation of the polygon.

    Example 1:

    Input: [1,2,3]
    Output: 6
    Explanation: The polygon is already triangulated, and the score of the only triangle is 6.
    

    Example 2:

    Input: [3,7,4,5]
    Output: 144
    Explanation: There are two triangulations, with possible scores: 3*7*5 + 4*5*7 = 245, or 3*4*5 + 3*4*7 = 144.  The minimum score 
    is 144.

    Example 3:

    Input: [1,3,1,4,1,5]
    Output: 13
    Explanation: The minimum score triangulation has score 1*1*3 + 1*1*4 + 1*1*5 + 1*1*1 = 13.
    

    Note:

    1. 3 <= A.length <= 50
    2. 1 <= A[i] <= 100

    解题思路:这里推荐一本书《趣学算法》,里面有几个专题,讲解也非常有意思。本题对应书中的4.7章:最优三角剖分,解答如下图。

    代码如下:

    class Solution(object):
        def minScoreTriangulation(self, A):
            """
            :type A: List[int]
            :rtype: int
            """
            dp = []
            for i in A:
                dp.append([0] * len(A))
            # dp[i][j] = dp[i][k] + dp[k+1][j] + A[i]+A[j]+A[k]
            for i in range(len(A)-3,-1,-1):
                for j in range(i+2,len(A)):
                    for k in range(i+1,j):
                        if dp[i][j] == 0 or dp[i][j] > dp[i][k] + dp[k][j] + A[i]*A[j]*A[k]:
                            dp[i][j] = dp[i][k] + dp[k][j] + A[i]*A[j]*A[k]
            #print dp
            return dp[0][-1]
  • 相关阅读:
    Mysql TEXT类型长度
    php中的||和or的区别 优先级
    常用的排序算法的时间复杂度和空间复杂度
    ThinkPHP 多应用多模块建立方式
    phpcms v9 后台添加修改页面空白页问题解决方法
    linux中nginx重定向方法总结
    Nginx的主要配置参数说明
    Apache多网站虚拟目录域名
    xampp命令
    (转载)处理SQL解析失败导致share pool 的争用
  • 原文地址:https://www.cnblogs.com/seyjs/p/10955757.html
Copyright © 2011-2022 走看看