zoukankan      html  css  js  c++  java
  • 【Hadoop基础教程】4、Hadoop之完全分布式环境搭建

    上一篇blog我们完成了Hadoop伪分布式环境的搭建,伪分布式模式也叫单节点集群模式, NameNode、SecondaryNameNode、DataNode、JobTracker、TaskTracker所有的守护进程全部运行在K-Master节点之上。在本篇blog我们将搭建完全分布式环境,运行NameNode、SecondaryNameNode、JobTracker守护进程在主节点上,运行DataNode、TaskTracker在从节点上。特别注意:在搭建Hadoop完全分布式环境前请确保完成了【Hadoop基础教程】1、Hadoop之服务器基础环境搭建 。

    开发环境


    硬件环境:Centos 6.5 服务器4台(一台为Master节点,三台为Slave节点) 
    软件环境:Java 1.7.0_45、hadoop-1.2.1

    1、 集群拓扑图


    我们使用4台机器来搭建Hadoop完全分布式环境,4台机器的拓扑图如下图所示:

    集群拓扑图

    Hadoop集群中每个节点的角色如下表所示:

    Hadoop集群中每个节点的角色表示

    2、 配置SSH


    • 环境准备

    下面以配置K-Master启动SSH服务为例进行演示,用户需参照下面步骤完成KVMSlave1~KVMSlave3三台子节点机器的SSH服务启动;

    1)以hadoop用户远程登录K-Master服务器,启动SSH服务;

    [hadoop@K-Master hadoop]$ sudo /etc/init.d/sshd start

    2)设置开机启动:

    [hadoop@K-Master hadoop]$ sudo chkconfig sshd on

    配置K-Master本机无密码登录

    下面以配置K-Master本机无密码登录为例进行讲解,用户需参照下面步骤完成KVMSlave1~KVMSlave3三台子节点机器的本机无密码登录;

    1)以hadoop用户远程登录K-Master服务器,在K-Master服务器上生成公钥和私钥密码对,密钥默认存储在”/home/hadoop/.ssh”目录下,生成公钥和私钥密码对时,无需输入密码,直接回车即可。

    #切换到hadoop用户,不能使用root用户生成密钥
    [hadoop@K-Master hadoop]$ su hadoop
    [hadoop@K-Master hadoop]$ cd /home/hadoop/
    [hadoop@K-Master hadoop]$ ssh-keygen -t rsa -P ""

    2)将公钥追加到”authorized_keys”文件

    [hadoop@K-Master hadoop]$ cd /home/hadoop/
    [hadoop@K-Master hadoop]$ cat .ssh/id_rsa.pub >> .ssh/authorized_keys

    3)赋予权限

    [hadoop@K-Master hadoop]$ chmod 600 .ssh/authorized_keys

    4)验证本机能无密码访问

    [hadoop@K-Master hadoop]$ ssh K-Master

    配置K-Master本机无密码登录KVMSlave1~KVMSlave3

    下面以K-Master无密码登录KVMSlave1为例进行讲解,用户需参照下面步骤完成K-Master无密码登录KVMSlave2~KVMSlave3。

    1)以hadoop用户远程登录KVMSlave1服务器,复制K-Master服务器的公钥”id_rsa.pub”到KVMSlave1服务器的”/home/hadoop/”目录下。

    [hadoop@KVMSlave1 hadoop]$ cd /home/hadoop/
    [hadoop@KVMSlave1 hadoop]$ scp hadoop@K-Master:/home/hadoop/.ssh/id_rsa.pub /home/hadoop/

    2)将K-Master的公钥(/home/hadoop/id_rsa.pub)追加到KVMSlave1的authorized_keys中。

    [hadoop@KVMSlave1 hadoop]$ cd /home/hadoop
    [hadoop@KVMSlave1 hadoop]$ cat id_rsa.pub >> .ssh/authorized_keys
    [hadoop@KVMSlave1 hadoop]$ rm -r /home/hadoop/id_rsa.pub

    3)另外开启一个终端,远程登录K-Master服务器,在K-Master服务器测试通过SSH无密码登录KVMSlave1。

    [hadoop@K-Master hadoop]$ ssh KVMSlave1
    配置KVMSlave1~KVMSlave3本机无密码登录K-Master

    下面以KVMSlave1无密码登录K-Master为例进行讲解,用户需参照下面步骤完成KVMSlave2~KVMSlave3无密码登录K-Master。

    1)以hadoop用户远程登录K-Master,复制KVMSlave1服务器的公钥”id_rsa.pub”到KVMSlave1服务器的”/home/hadoop/”目录下。

    [hadoop@K-Master hadoop]$ scp hadoop@KVMSlave1:/home/hadoop/.ssh/id_rsa.pub /home/hadoop

    2)将KVMSlave1的公钥(/home/hadoop/id_rsa.pub)追加到K-Master的authorized_keys中。

    [hadoop@K-Master hadoop]$ cd /home/hadoop
    [hadoop@K-Master hadoop]$ cat id_rsa.pub >> .ssh/authorized_keys
    [hadoop@K-Master hadoop]$ rm –r /home/hadoop/id_rsa.pub

    3)以hadoop用户远程登录KVMSlave1服务器,在KVMSlave1服务器测试通过SSH无密码登录K-Master。

    [hadoop@KVMSlave1 hadoop]$ ssh K-Master

    3、 安装Hadoop


    如果用户已经完成了Hadoop伪分布式环境搭建,建议删除/usr/hadoop/安装环境,从零开始配置Hadoop完全分布式环境。

    1)以hadoop用户远程登录K-Master服务器,下载hadoop-1.2.1.tar.gz ,并将其拷贝到K-Master服务器的/home/hadoop/目录下。

    2)解压Hadoop源文件

    [hadoop@K-Master ~]$ su hadoop
    [hadoop@K-Master ~]$ cd /usr
    [hadoop@K-Master usr]$ sudo tar -zxvf  /home/hadoop/hadoop-1.2.1.tar.gz        //将文件减压在当前路径

    3)重命名hadoop

    [hadoop@K-Master usr]$ sudo mv hadoop-1.2.1/ hadoop/

    4) 设置hadoop文件夹的用户属组和用户组

    很关键到一步,便于hadoop用户对该文件夹的文件拥有读写权限,不然后续hadoop启动后,无法在该文件夹创建文件和写入日志信息。

    [hadoop@K-Master usr]$ sudo chown -R hadoop:hadoop /usr/hadoop

    5)删除安装包

     [hadoop@K-Master ~]$ rm -rf  /home/hadoop/hadoop-1.2.1.tar.gz    #删除"hadoop-1.2.1.tar.gz"安装包

    4、 配置K-Master的hadoop环境


    1)配置环境变量

    [hadoop@K-Master ~]$ sudo vi /etc/profile
    #HADOOP
    export HADOOP_HOME=/usr/hadoop
    export PATH=$PATH:$HADOOP_HOME/bin 
    export HADOOP_HOME_WARN_SUPPRESS=1 

    使得hadoop命令在当前终端立即生效;

    [hadoop@K-Master ~] $source /etc/profile

    2)配置hadoop-env.sh

    hadoop环境是基于JVM虚拟机环境的,故需在hadoop-env.sh配置文件中指定JDK环境。修改/usr/hadoop/conf/hadoop-env.sh文件,添加如下JDK配置信息。

    [hadoop@K-Master ~] cd /usr/hadoop/
    [hadoop@K-Master hadoop] vi conf/hadoop-env.sh
    export JAVA_HOME=/usr/java/jdk1.7.0_65

    3)配置core-site.xml

    修改Hadoop核心配置文件/usr/hadoop/conf/core-site.xml,通过fs.default.name指定 NameNode 的 IP 地址和端口号,通过hadoop.tmp.dir指定hadoop数据存储的临时文件夹。

    [hadoop@K-Master hadoop] vi conf/core-site.xml
    <configuration>
        <property>
            <name>fs.default.name</name>
            <value>hdfs://K-Master:9000</value>
        </property>
        <property>
            <name>hadoop.tmp.dir</name>
            <value>/usr/hadoop/tmp</value>
        </property>
    </configuration>

    特别注意:如没有配置hadoop.tmp.dir参数,此时系统默认的临时目录为:/tmp/hadoo-hadoop。而这个目录在每次重启后都会被删除,必须重新执行format才行,否则会出错。

    4)配置hdfs-site.xml

    修改HDFS核心配置文件/usr/hadoop/conf/hdfs-site.xml,通过dfs.replication指定HDFS的备份因子为3,通过dfs.name.dir指定namenode节点的文件存储目录,通过dfs.data.dir指定datanode节点的文件存储目录。

    [hadoop@K-Master hadoop] vi conf/hdfs-site.xml
    <configuration>
        <property>
            <name>dfs.replication</name>
            <value>3</value>
        </property>
        <property>
            <name>dfs.name.dir</name>
            <value>/usr/hadoop/hdfs/name</value>
        </property>
        <property>
            <name>dfs.data.dir</name>
            <value>/usr/hadoop/hdfs/data</value>
        </property>
    </configuration>

    5)配置mapred-site.xml

    修改MapReduce核心配置文件/usr/hadoop/conf/mapred-site.xml,通过mapred.job.tracker属性指定JobTracker的地址和端口。

    [hadoop@K-Master hadoop] vi conf/mapred-site.xml
    <configuration>
        <property>
            <name>mapred.job.tracker</name>
            <value>http://K-Master:9001</value>
        </property>
    </configuration>

    6)配置masters文件

    修改/user/hadoop/conf/masters文件,该文件指定namenode节点所在的服务器机器。删除localhost,添加namenode节点的主机名K-Master;不建议使用IP地址,因为IP地址可能会变化,但是主机名一般不会变化。

    [hadoop@K-Master hadoop] vi conf/masters
    K-Master

    7)配置slaves文件(Master主机特有)

    修改/usr/hadoop/conf/slaves文件,该文件指定哪些服务器节点是datanode节点。删除locahost,添加所有datanode节点的主机名,如下所示。

    [hadoop@K-Master hadoop] vi conf/slaves
    KVMSlave1
    KVMSlave2
    KVMSlave3

    5、 配置KVMSlave的hadoop环境


    下面以配置KVMSlave1的hadoop为例进行演示,用户需参照以下步骤完成其他KVMSlave服务器的配置。

    1)以hadoop用户远程登录KVMSlave1服务器,拷贝K-Master主机的hadoop文件夹到本地/usr/目录下;

    [hadoop@KVMSlave1 ~]$ cd /usr/
    [hadoop@KVMSlave1 usr]$ sudo scp -r hadoop@K-Master:/usr/hadoop/ .
    [hadoop@KVMSlave1 usr]$ sudo chown -R hadoop:hadoop hadoop/
    #slaves文件内容删除,或者直接删除slaves
    [hadoop@KVMSlave1 usr]$ rm /usr/hadoop/conf/slaves

    2)配置环境变量

    [hadoop@KVMSlave1 ~]$ sudo vi /etc/profile
    #HADOOP
    export HADOOP_HOME=/usr/hadoop
    export PATH=$PATH:$HADOOP_HOME/bin 
    export HADOOP_HOME_WARN_SUPPRESS=1 

    使得hadoop命令在当前终端立即生效;

    [hadoop@KVMSlave1 ~]$ source /etc/profile

    6、 格式化HDFS文件系统


    格式化HDFS文件系统需要在namenode节点上通过hadoop用户执行,而且只需要执行一次,下次启动时不需要再格式化,直接启动HDFS文件管理系统和MapReduce服务即可。

    [hadoop@K-Master ~]$ hadoop namenode -format
    14/07/24 16:37:57 INFO namenode.NameNode: STARTUP_MSG: 
    /************************************************************
    STARTUP_MSG: Starting NameNode
    STARTUP_MSG:   host = K-Master/192.168.100.147
    STARTUP_MSG:   args = [-format]
    STARTUP_MSG:   version = 1.2.1
    STARTUP_MSG:   build = https://svn.apache.org/repos/asf/hadoop/common/branches/branch-1.2 -r 1503152; compiled by 'mattf' on Mon Jul 22 15:23:09 PDT 2013
    STARTUP_MSG:   java = 1.7.0_65
    ********************a****************************************/
    14/07/24 16:37:57 INFO util.GSet: Computing capacity for map BlocksMap
    14/07/24 16:37:57 INFO util.GSet: VM type   = 64-bit
    14/07/24 16:37:57 INFO util.GSet: 2.0% max memory = 932184064
    14/07/24 16:37:57 INFO util.GSet: capacity  = 2^21 = 2097152 entries
    14/07/24 16:37:57 INFO util.GSet: recommended=2097152, actual=2097152
    14/07/24 16:37:58 INFO namenode.FSNamesystem: fsOwner=hadoop
    14/07/24 16:37:58 INFO namenode.FSNamesystem: supergroup=supergroup
    14/07/24 16:37:58 INFO namenode.FSNamesystem: isPermissionEnabled=true
    14/07/24 16:37:58 INFO namenode.FSNamesystem: dfs.block.invalidate.limit=100
    14/07/24 16:37:58 INFO namenode.FSNamesystem: isAccessTokenEnabled=false accessKeyUpdateInterval=0 min(s), accessTokenLifetime=0 min(s)
    14/07/24 16:37:58 INFO namenode.FSEditLog: dfs.namenode.edits.toleration.length = 0
    14/07/24 16:37:58 INFO namenode.NameNode: Caching file names occuring more than 10 times 
    14/07/24 16:37:58 INFO common.Storage: Image file /usr/hadoop/hdfs/name/current/fsimage of size 112 bytes saved in 0 seconds.
    14/07/24 16:37:59 INFO namenode.FSEditLog: closing edit log: position=4, editlog=/usr/hadoop/hdfs/name/current/edits
    14/07/24 16:37:59 INFO namenode.FSEditLog: close success: truncate to 4, editlog=/usr/hadoop/hdfs/name/current/edits
    14/07/24 16:37:59 INFO common.Storage: Storage directory /usr/hadoop/hdfs/name has been successfully formatted.
    14/07/24 16:37:59 INFO namenode.NameNode: SHUTDOWN_MSG: 
    /************************************************************
    SHUTDOWN_MSG: Shutting down NameNode at K-Master/192.168.100.147
    ************************************************************/

    7、 启动HDFS文件管理系统


    1)通过start-dfs.sh命令启动HDFS文件管理系统,启动后通过如下日志信息可以看到分别启动了namenode节点(K-Master)、datanode节点(KVMSlave1、KVMSlave2、KVMSlave3)和secondarynamenode节点(K-Master)。

    [hadoop@K-Master ~]$ start-dfs.sh
    starting namenode, logging to /usr/hadoop/libexec/../logs/hadoop-hadoop-namenode-K-Master.out
    KVMSlave1: starting datanode, logging to /usr/hadoop/libexec/../logs/hadoop-hadoop-datanode-KVMSlave1.out
    KVMSlave2: starting datanode, logging to /usr/hadoop/libexec/../logs/hadoop-hadoop-datanode-KVMSlave2.out
    KVMSlave3: starting datanode, logging to /usr/hadoop/libexec/../logs/hadoop-hadoop-datanode-KVMSlave3.out
    K-Master: starting secondarynamenode, logging to /usr/hadoop/libexec/../logs/hadoop-hadoop-secondarynamenode-K-Master.out

    2)在K-Master节点上查看启动进程

    若打印如下日志信息,表明namenode节点启动了NameNode和SecondaryNameNode2服务进程,即namenode节点HDFS文件管理系统启动成功。

    [hadoop@K-Master ~]$ jps
    6164 Jps
    5971 NameNode
    6108 SecondaryNameNode

    3)在KVMSlave1节点上查看启动进程

    以hadoop用户远程登录KVMSlave1服务器,通过jps命令查看启动进程。若打印如下日志信息,表明datanode节点启动了DataNode服务进程,即KVMSlave1节点HDFS文件管理系统启动成功,用户可在远程登录其他datanode节点上查看其HDFS文件管理系统启动是否成功。

    [hadoop@KVMSlave1 ~]$ jps
    1327 Jps
    1265 DataNode

    8、 启动MapReduce


    1)通过start-mapred.sh命令启动MapReduce分布式计算服务,启动后通过以下日志信息可以看出在namenode节点上启动了jobtracker进程,分别在datanode节点(KVMSlave1、KVMSlave2、KVMSlave3)上启动了tasktracker进程。

    [hadoop@K-Master ~]$ start-mapred.sh
    starting jobtracker, logging to /usr/hadoop/libexec/../logs/hadoop-hadoop-jobtracker-K-Master.out
    KVMSlave1: starting tasktracker, logging to /usr/hadoop/libexec/../logs/hadoop-hadoop-tasktracker-KVMSlave1.out
    KVMSlave2: starting tasktracker, logging to /usr/hadoop/libexec/../logs/hadoop-hadoop-tasktracker-KVMSlave2.out
    KVMSlave3: starting tasktracker, logging to /usr/hadoop/libexec/../logs/hadoop-hadoop-tasktracker-KVMSlave3.out

    2)K-Master节点上查看启动进程

    若打印如下日志信息,表明namenode节点上新启动了JobTracker进程,即namenode节点的JobTracker启动成功。

    [hadoop@K-Master ~]$ jps
    1342 NameNode
    1726 Jps
    1619 JobTracker
    1480 SecondaryNameNode

    3)KVMSlave1节点上查看启动进程

    以hadoop用户远程登录KVMSlave1服务器,通过jps命令查看启动进程。若打印如下日志信息,表明KVMSlave1节点上新启动了TaskTracker进程,即KVMSlave1节点的TaskTracker启动成功。用户可远程登录其他的datanode节点上查看TaskTracker是否启动成功。

    [hadoop@KVMSlave1 ~]$ jps
    1549 TaskTracker
    1265 DataNode
    1618 Jps

    9、 命令查看Hadoop集群的状态


    通过简单的jps命令虽然可以查看HDFS文件管理系统、MapReduce服务是否启动成功,但是无法查看到Hadoop整个集群的运行状态。我们可以通过hadoop dfsadmin -report进行查看。用该命令可以快速定位出哪些节点挂掉了,HDFS的容量以及使用了多少,以及每个节点的硬盘使用情况。

    [hadoop@K-Master ~]$ hadoop dfsadmin -report
    Configured Capacity: 238417846272 (222.04 GB)
    Present Capacity: 219128426496 (204.08 GB)
    DFS Remaining: 218227326976 (203.24 GB)
    DFS Used: 901099520 (859.36 MB)
    DFS Used%: 0.41%
    Under replicated blocks: 72
    Blocks with corrupt replicas: 0
    Missing blocks: 0
    
    -------------------------------------------------
    Datanodes available: 3 (3 total, 0 dead)
    
    Name: 192.168.100.144:50010
    Decommission Status : Normal
    Configured Capacity: 79472615424 (74.01 GB)
    DFS Used: 300367872 (286.45 MB)
    Non DFS Used: 6218309632 (5.79 GB)
    DFS Remaining: 72953937920(67.94 GB)
    DFS Used%: 0.38%
    DFS Remaining%: 91.8%
    Last contact: Tue Feb 03 16:50:00 CST 2015
    
    
    Name: 192.168.100.148:50010
    Decommission Status : Normal
    Configured Capacity: 79472615424 (74.01 GB)
    DFS Used: 300367872 (286.45 MB)
    Non DFS Used: 6242603008 (5.81 GB)
    DFS Remaining: 72929644544(67.92 GB)
    DFS Used%: 0.38%
    DFS Remaining%: 91.77%
    Last contact: Tue Feb 03 16:49:59 CST 2015
    
    
    Name: 192.168.100.146:50010
    Decommission Status : Normal
    Configured Capacity: 79472615424 (74.01 GB)
    DFS Used: 300363776 (286.45 MB)
    Non DFS Used: 6828507136 (6.36 GB)
    DFS Remaining: 72343744512(67.38 GB)
    DFS Used%: 0.38%
    DFS Remaining%: 91.03%
    Last contact: Tue Feb 03 16:50:00 CST 2015
  • 相关阅读:
    oracle常用命令(比较常见好用)
    vim编辑器详解
    对话框和打印控件
    winform弹出唯一的窗体
    ListView
    菜单栏和布局
    窗体属性和公共控件
    ASPCMS和WPF
    MVC
    正则表达式
  • 原文地址:https://www.cnblogs.com/shamo89/p/9276968.html
Copyright © 2011-2022 走看看