zoukankan      html  css  js  c++  java
  • STM32F4 How do you generate complementary PWM Outputs?

    How do you generate complementary PWM Outputs?

    I would like to generate complementary PWM Outputs with adjustable dead time.

    According to the STM32F401RE Microcontroller datasheet 

    http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN1810/PF258797,

    this is possible with Timer 1 (TIM1).

    So far I have attempted to configure the timer myself using information available from the TIM HAL Driver from ST:

    http://developer.mbed.org/users/dreschpe/code/mbed-F401/docs/4e95b79aa640/stm32f4xx__hal__tim__ex_8c.html

    and looking through an example of someone using the driver: 

    https://petoknm.wordpress.com/2015/01/05/rotary-encoder-and-stm32/.

    Obviously, I do not want to use a HAL sensor, but this is the closest example I can get to someone using the advanced features of the timers.

    Thanks!

    Damien

    Edit: Here is the code I went with in the end:

    void ConfigurePWM(float duty_us, float period_us){
        unsigned int value;
        float newVal;
        
        // Ensure power is turned on
        // Grabbed from lines 54-57 of analogin_api.h, modified for PWM
        // This turns on the clock to Ports A, B, and C
        RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN;
        // This turns on the clock to the Time 1:
        RCC->APB2ENR |= RCC_APB2ENR_TIM1EN;
        
        // Set the GPIO Ports properly:
        // PWM1 is connected to  PA_8
        // PWM1N is connected to PA_7
        
        // Set the PWM outputs to general output pins:
        // This sets the PA_7 and PA_8 pins to Alternate Function Pins
        value = 0x8000 + 0x20000;
        GPIOA->MODER |= value;
        
        // Set the PWM outputs to high speed:
        value = 0xC000 + 0x30000;
        GPIOA->OSPEEDR |= value;
        
        // Set PWM as outputs to the pins:
        value = GPIOA->AFR[1];
        // Reset the lowest four bits:
        value &= 0xFFFFFFF0;
        // Configure PA_8 to AF:
        value |= 0x1;
        GPIOA->AFR[1] = value;
        
        value = GPIOA->AFR[0];
        // Reset the the 4 MSB:
        value &= 0x0FFFFFFF;
        // Configure PA_7 to AF:
        value |= 0x10000000;
        GPIOA->AFR[0] = value;
        
        // Set pull down resistors to PWM outputs:
        value = GPIOA->PUPDR;
        // Clear the bits:
        value &= ~(GPIO_PUPDR_PUPDR7 | GPIO_PUPDR_PUPDR8);
        // Set to pull down:
        value |= GPIO_PUPDR_PUPDR7_1 | GPIO_PUPDR_PUPDR8_1;
        // Set the register:
        GPIOA ->PUPDR = value;
        
        // Set the prescale value to 1:
        TIM1->PSC = 0;
        
        // *** TIM1 control register 1: TIMx_CR1 ***
        value = 0;
        // [9:8] Set CKD bits to zero for clock division of 1
        // [7] TIMx_ARR register is buffered, set the ARPE bit to 1:
        // value |= 0x80;
        // [6:5] Set CMS bits to zero for edge aligned mode
        // [6:5] Set CMS bits to 10 for Center Aligned mode 2, up down mode with flags set when counter reaches the top.
        //value |= TIM_CR1_CMS_1;
        // [4] Set DIR bit to zero for upcounting
        // [3] Set OPM bit to zero so that the counter is not stopped at update event
        // [2] Set URS bit to zero so that anything can create an interrupt
        // [1] Set UDIS bit to zero to generate an update event
        // [0] Set the CEN bit to zero to disable the counter
        // * Set the TIMx_CR1 Register: *
        TIM1->CR1 |= value;
        
        // *** TIM1 control register 2: TIMx_CR2 ***
        value  = 0;
        // [14] Set OIS4 bit to zero, the idle state of OC4 output
        // [13] Set OIS3N bit to zero, the idle state of OC3N output
        // [12] Set OIS3 bit to zero, the idle state of OC3 output
        // [11] Set OIS2N bit to zero, the idle state of OC2N output
        // [10] Set OIS2 bit to zero, the idle state of OC2 output
        // [9] Set OIS1N bit to zero, the idle state of OC1N output
        // [8] Set OIS1 bit to zero, the idle state of OC1 output
        // [7] Set TI1S bit to zero, connecting only CH1 pin to TI1 input
        // [6:4] Set to 111: The OC4REF signal is used as trigger output (TRGO)
        // value |= TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0;
        // value |= TIM_CR2_MMS_1 | TIM_CR2_MMS_0;
        // [3] Set CCDS bit to zero, request sent when CCx event occurs
        // [2] Set CCUS bit to 1, capture/compare control bits are updated by setting the COMG bit or when a rising edge occurs on TRGI
        // value |= 0x4;
        // [0] Set CCPC bit to 1, CCxE, CCxNE and OCxM are update on a commutation event, or rising edge on TRGI
        // value |= 0x1;
        // * Set the TIMx_CR2 Register: *
        TIM1->CR2 = value;
        
        // *** TIM1 Auto Reload Register: ARR ***
        value = 0;
        // [15:0] Set ARR bits to the frequency to be loaded in:
        newVal = ceil(period_us/PWMSTEP_US);
        value = (unsigned int) newVal;
        // * Set the TIMx_ARR Register:
        TIM1->ARR = value;
        
        // *** TIM1 capture/compare register 1: CCR1 ***
        value = 0;
        // [15:0] Set the capture compare value to the duty cycle:
        newVal = ceil(duty_us/PWMSTEP_US);
        value = (unsigned int) newVal;
        // * Set the TIMx_CCR1 Register:
        TIM1->CCR1 = value;
        
        // *** TIM1 capture/compare register 4: CCR4 ***
        value = 0;
        // [15:0] Set the capture compare value to the duty cycle:
        newVal = ceil(duty_us/2.0f/PWMSTEP_US);
        value = (unsigned int) newVal;
        // * Set the TIMx_CCR1 Register:
        TIM1->CCR4 = TIM1->ARR - CH4SHIFT;
        
        // *** TIM1 capture/compare mode register 2: CCMR2
        value = 0;
        // [15] Set OC4CE bit to 0, OC4Ref is not affected by the ETRF input
        // [14-12] Set the OC4M bits to '110', PWM mode 1, which is what we want I think.
        value |= TIM_CCMR2_OC4M_2 | TIM_CCMR2_OC4M_1;
        // [11] Set the OC4PE bit to 1, meaning read/write operations to the preload event require an update event.
        value |= 0x800;
        // [10] Set the OC4FE bit to 0, the output compare fast enable is disabled
        // [9:8] Set the CC4S bits to 0, the channel is configured as an output.
        // * Set the TIMx_CCMR2 Register: *
        TIM1->CCMR2 = value;
        
        // *** TIM1 capture/compare mode register 1: CCMR1
        value = 0;
        // [7] Set OC1CE bit to 0, OC1Ref is not affected by the ETRF input
        // [6-4] Set the OC1M bits to '110', PWM mode 1, which is what we want I think.
        value |= TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1;
        // [3] Set the OC1PE bit to 1, meaning read/write operations to the preload event require an update event.
        value |= 0x8;
        // [2] Set the OC1FE bit to 0, the output compare fast enable is disabled
        // [1:0] Set the CC1S bits to 0, the channel is configured as an output.
        // * Set the TIMx_CCMR1 Register: *
        TIM1->CCMR1 = value;
        
        // *** TIM1 capture/compare enable register: CCER
        value = 0;
        // [15:4] - Don't care:
        // [3] Set CC1NP bit to zero for active high.
        // [2] Set CC1NE bit to 0, to de-activate the OC1N signal
        // value |= 0x4;
        // [1] Set the CC1P bit to zero for active high.
        // [0] Set the CC1E bit to 1, to de-activate the OC1 signal
        // value |= 0x1;
        // * Set the TIM1_CCER Register: *
        TIM1->CCER = value;
        
        // *** TIM1 break and dead-time register: BDTR
        value = 0;
        // [15] Set MOE bit to 1 to enable the OC and OCN outputs
        value |= 0x8000;
        // [11] Set the OSSR bit such that the ouputs are forced to their idle mode when not running
        //value |= TIM_BDTR_OSSR;
        // [10] Set OSSI bit such that the outputs are forced to their idle mode when MOE = 0
        value |= TIM_BDTR_OSSI;
        // * Set the TIM1_BDTR register:
        TIM1->BDTR = value;
        
        // *** TIM1 DMA/Interrupt enable register: DIER
        value = 0;
        // [2] Set the CC1IE bit to 1, to trigger an interrupt when counter 1 has a match - which should be half way through the duty cycle.
        value |= TIM_DIER_CC4IE;
        // Set the TIM1_DIER register:
        TIM1->DIER |= value;
        
        // Set the UG bit in the EGR register to kick things off:
        value = 3;
        TIM1->EGR = value;
     
        // Configure the interrupt:
        NVIC_SetVector(TIM1_CC_IRQn, (uint32_t)&TIM1_CC_IRQHandler);
        NVIC_EnableIRQ(TIM1_CC_IRQn);
        
     
        return;
     
    }
  • 相关阅读:
    Future和Callable的使用
    Tiny Jpeg Decoder (JPEG解码程序) 源代码分析 1:解码文件头
    jQuery 表格排序插件 Tablesorter 使用
    jQuery 表单验证插件 jQuery Validation Engine 使用
    jQuery 文本编辑器插件 HtmlBox 使用
    开源视频质量评价工具: IQA
    hql 语法与详细解释
    MYSQL常用命令
    C++发送HTTP请求获取网页HTML代码
    编译运行Red5源代码
  • 原文地址:https://www.cnblogs.com/shangdawei/p/4790568.html
Copyright © 2011-2022 走看看