zoukankan      html  css  js  c++  java
  • 2014 Multi-University Training Contest 5

    hdu4911

    max(逆序数-k,0)

      1 #include <iostream>
      2 #include<stdio.h>
      3 #include<vector>
      4 #include<queue>
      5 #include<stack>
      6 #include<string.h>
      7 #include<algorithm>
      8 #include<map>
      9 using namespace std;
     10 #define LL long long
     11 #define gcd(a,b) (b==0?a:gcd(b,a%b))
     12 #define lcm(a,b) (a*b/gcd(a,b))
     13 //O(n)求素数,1-n的欧拉数
     14 #define N 100010
     15 //A^x = A^(x % Phi(C) + Phi(C)) (mod C)
     16 map<int,int>f;
     17 struct node
     18 {
     19     int a;
     20     int id;
     21 }p[N];
     22 int s[N<<2],b[N];
     23 void up(int w)
     24 {
     25     s[w]  = s[w<<1]+s[w<<1|1];
     26 }
     27 void build(int l,int r,int w)
     28 {
     29     if(l==r)
     30     {
     31         s[w] = 0;
     32         return ;
     33     }
     34     int m = (l+r)>>1;
     35     build(l,m,w<<1);
     36     build(m+1,r,w<<1|1);
     37     up(w);
     38 }
     39 void update(int p,int d,int l,int r,int w)
     40 {
     41     if(l==r)
     42     {
     43         s[w] += d;
     44         return ;
     45     }
     46     int m  =(l+r)>>1;
     47     if(p<=m)
     48     update(p,d,l,m,w<<1);
     49     else
     50     update(p,d,m+1,r,w<<1|1);
     51     up(w);
     52 
     53 }
     54 int query(int a,int b,int l,int r,int w)
     55 {
     56     if(a<=l&&b>=r)
     57         return s[w];
     58     int m = (l+r)>>1;
     59     int res = 0;
     60     if(a<=m) res+=query(a,b,l,m,w<<1);
     61     if(b>m) res+=query(a,b,m+1,r,w<<1|1);
     62     return res;
     63 }
     64 bool cmp(node a,node b)
     65 {
     66     return a.a<b.a;
     67 }
     68 int main()
     69 {
     70     int n,i,j,k;
     71     while(scanf("%d%d",&n,&k)!=EOF)
     72     {
     73         f.clear();
     74         for(i = 1; i<= n; i++)
     75         {
     76             scanf("%d",&p[i].a);
     77             p[i].id = i;
     78             b[i] = p[i].a;
     79         }
     80         sort(b+1,b+n+1);
     81         f[b[1]] = 1;
     82         int o = 1;
     83         for(i = 2; i<= n; i++)
     84             if(b[i]!=b[i-1])
     85             {
     86                 f[b[i]] = ++o;
     87             }
     88         build(1,o,1);
     89         LL s = 0 ;
     90         for(i = 1; i<= n ;i++)
     91         {
     92             //cout<<f[p[i].a]<<endl;
     93             int kk = 0;
     94             if(f[p[i].a]<o)
     95             kk = query(f[p[i].a]+1,o,1,o,1);
     96             update(f[p[i].a],1,1,o,1);
     97             s+=kk;
     98         }
     99         LL x = 0;
    100         s = max(x,s-k);
    101         cout<<s<<endl;
    102     }
    103     return 0;
    104 }
    View Code

    HDU4913

    几个数的LCM = 分解质因子之后每个质因子的最高次幂相乘之积  这里因为只有2、3 . lcm = 2^max*3^max

    可以把b从小到大排序

    x1 a1 b1

    x2 a2 b2

    x3 a3 b3

    x4 a4 b4

    假如现在集合里面没有数为空集,从上往下依次插入这些数,插入x1时 ,因为当前b1是最大的,它所构成的所有集合中3的最高次幂肯定选b1,

    所以现在只需找到集合中的2的最高次幂分别有哪些,显然第一个只有 a1.而当插入第二个、第三个、第四个时,3的最高次幂分别为b2 b3 b4 ,a的选择会有多种,

    对于如果选择了a1那么这样的集合将会有2^k个,k = 比a1小的数的个数,总的式子为 bi(2^k1*2^a1+2^k2*2^a2+2^k3*2^a3......) ( 所有的aj<ai)

    这样可以开一个线段树维护前面有多少个比ai小的数,再开一个线段树维护后面的每一项的总值,例如1就为2^k1*2^a1

    每插入一项,就把2^ki*2^ai放入第i个位置,求完当前和值后,将所有大于ai的值*2,依次扫描一遍就可得出结果。

      1 #include <iostream>
      2 #include<stdio.h>
      3 #include<vector>
      4 #include<queue>
      5 #include<stack>
      6 #include<string.h>
      7 #include<algorithm>
      8 #include<map>
      9 using namespace std;
     10 #define LL __int64
     11 #define gcd(a,b) (b==0?a:gcd(b,a%b))
     12 #define lcm(a,b) (a*b/gcd(a,b))
     13 #define N 100005
     14 #define mod 1000000007
     15 struct node
     16 {
     17     int a,b;
     18     int id;
     19 } p[N];
     20 LL lz[N<<2],s[N<<2];
     21 LL sum[N<<2];
     22 int po[N];
     23 LL mul(LL a,LL b,LL m)
     24 {
     25     LL d,t;
     26     d=1;
     27     t=a;
     28     while (b>0)
     29     {
     30         if (b%2==1)
     31         d=(d*t)%m;
     32         b/=2;
     33         t=(t*t)%m;
     34     }
     35     return d;
     36 }
     37 bool cmp(node x,node y)
     38 {
     39     return x.a<y.a;
     40 }
     41 bool cmpp(node x,node y)
     42 {
     43     return x.b<y.b;
     44 }
     45 void up(int w)
     46 {
     47     s[w] = (s[w<<1]+s[w<<1|1])%mod;
     48 }
     49 void build(int l,int r,int w)
     50 {
     51     lz[w] = 1;
     52     if(l==r)
     53     {
     54         s[w] = 0;
     55         return ;
     56     }
     57     int m = (l+r)>>1;
     58     build(l,m,w<<1);
     59     build(m+1,r,w<<1|1);
     60     up(w);
     61 }
     62 void down(int w,int m)
     63 {
     64     if(lz[w]!=1)
     65     {
     66         lz[w<<1] = (lz[w<<1]*lz[w])%mod;
     67         lz[w<<1|1] = (lz[w<<1|1]*lz[w])%mod;
     68         s[w<<1] = (s[w<<1]*lz[w])%mod;
     69         s[w<<1|1] = (s[w<<1|1]*lz[w])%mod;
     70         lz[w] = 1;
     71     }
     72 }
     73 void update(int p,LL d,int l,int r,int w)
     74 {
     75     if(l==r)
     76     {
     77         s[w] = d;
     78         return ;
     79     }
     80     down(w,r-l+1);
     81     int m = (l+r)>>1;
     82     if(p<=m)
     83         update(p,d,l,m,w<<1);
     84     else
     85         update(p,d,m+1,r,w<<1|1);
     86     up(w);
     87 }
     88 void update1(int a,int b,LL d,int l,int r,int w)
     89 {
     90     if(a<=l&&b>=r)
     91     {
     92         s[w] = (s[w]*d)%mod;
     93         lz[w] = (lz[w]*d)%mod;
     94         return ;
     95     }
     96     down(w,r-l+1);
     97     int m = (l+r)>>1;
     98     if(a<=m) update1(a,b,d,l,m,w<<1);
     99     if(b>m) update1(a,b,d,m+1,r,w<<1|1);
    100     up(w);
    101 }
    102 LL query(int a,int b,int l,int r,int w)
    103 {
    104     if(a<=l&&b>=r) return s[w];
    105     int m = (l+r)>>1;
    106     LL res = 0;
    107     if(a<=m) res+=query(a,b,l,m,w<<1);
    108     if(b>m) res = (res+query(a,b,m+1,r,w<<1|1))%mod;
    109     return res;
    110 }
    111 void up1(int w)
    112 {
    113     sum[w] = sum[w<<1]+sum[w<<1|1];
    114 }
    115 void build1(int l,int r,int w)
    116 {
    117     if(l==r)
    118     {
    119         sum[l] = 0;
    120         return ;
    121     }
    122     int m = (l+r)>>1;
    123     build1(l,m,w<<1);
    124     build1(m+1,r,w<<1|1);
    125     up1(w);
    126 }
    127 void update2(int p,int l,int r,int w)
    128 {
    129     if(l==r)
    130     {
    131         sum[w] = 1;
    132         return ;
    133     }
    134     int m = (l+r)>>1;
    135     if(p<=m)
    136     update2(p,l,m,w<<1);
    137     else update2(p,m+1,r,w<<1|1);
    138     up1(w);
    139 }
    140 int query1(int a,int b,int l,int r,int w)
    141 {
    142     if(a<=l&&b>=r)
    143     {
    144         return sum[w];
    145     }
    146     int m = (l+r)>>1;
    147     int res=0;
    148     if(a<=m) res+=query1(a,b,l,m,w<<1);
    149     if(b>m) res+=query1(a,b,m+1,r,w<<1|1);
    150     return res;
    151 }
    152 int main()
    153 {
    154     int n,i;
    155     while(scanf("%d",&n)!=EOF)
    156     {
    157         memset(sum,0,sizeof(sum));
    158         for(i = 1; i<= n; i++)
    159         {
    160             scanf("%d%d",&p[i].a,&p[i].b);
    161             p[i].id = i;
    162         }
    163         sort(p+1,p+n+1,cmp);
    164         for(i = 1; i <= n ; i++)
    165         {
    166             po[p[i].id] = i;
    167         }
    168         sort(p+1,p+n+1,cmpp);
    169         build(1,n,1);
    170         LL ans = 0;
    171         build1(1,n,1);
    172         for(i = 1; i <= n; i++)
    173         {
    174             int k = query1(1,po[p[i].id],1,n,1);
    175             //cout<<k<<" "<<p[i].a<<" "<<po[p[i].id]<<endl;
    176             update2(po[p[i].id],1,n,1);
    177             update(po[p[i].id],mul(2,p[i].a+k,mod),1,n,1);
    178             LL ss = query(po[p[i].id],n,1,n,1);
    179            // cout<<ss<<endl;
    180             ans=(ans+(mul(3,p[i].b,mod)*ss)%mod)%mod;
    181             if(po[p[i].id]<n)
    182             update1(po[p[i].id]+1,n,2,1,n,1);
    183         }
    184         printf("%I64d
    ",ans);
    185     }
    186     return 0;
    187 }
    View Code
      1 #include <iostream>
      2 #include<stdio.h>
      3 #include<vector>
      4 #include<queue>
      5 #include<stack>
      6 #include<string.h>
      7 #include<algorithm>
      8 #include<map>
      9 using namespace std;
     10 #define LL __int64
     11 #define gcd(a,b) (b==0?a:gcd(b,a%b))
     12 #define lcm(a,b) (a*b/gcd(a,b))
     13 #define N 100005
     14 #define mod 1000000007
     15 struct node
     16 {
     17     int a,b;
     18     int id;
     19 } p[N];
     20 LL lz[N<<2],s[N<<2];
     21 LL sum[N<<2];
     22 int po[N];
     23 LL mul(LL a,LL b,LL m)
     24 {
     25     LL d,t;
     26     d=1;
     27     t=a;
     28     while (b>0)
     29     {
     30         if (b%2==1)
     31         d=(d*t)%m;
     32         b/=2;
     33         t=(t*t)%m;
     34     }
     35     return d;
     36 }
     37 bool cmp(node x,node y)
     38 {
     39     return x.a<y.a;
     40 }
     41 bool cmpp(node x,node y)
     42 {
     43     return x.b<y.b;
     44 }
     45 void up(int w)
     46 {
     47     s[w] = (s[w<<1]+s[w<<1|1])%mod;
     48 }
     49 void build(int l,int r,int w)
     50 {
     51     lz[w] = 1;
     52     if(l==r)
     53     {
     54         s[w] = 0;
     55         return ;
     56     }
     57     int m = (l+r)>>1;
     58     build(l,m,w<<1);
     59     build(m+1,r,w<<1|1);
     60     up(w);
     61 }
     62 void down(int w,int m)
     63 {
     64     if(lz[w]!=1)
     65     {
     66         lz[w<<1] = (lz[w<<1]*lz[w])%mod;
     67         lz[w<<1|1] = (lz[w<<1|1]*lz[w])%mod;
     68         s[w<<1] = (s[w<<1]*lz[w])%mod;
     69         s[w<<1|1] = (s[w<<1|1]*lz[w])%mod;
     70         lz[w] = 1;
     71     }
     72 }
     73 void update(int p,LL d,int l,int r,int w)
     74 {
     75     if(l==r)
     76     {
     77         s[w] = d;
     78         return ;
     79     }
     80     down(w,r-l+1);
     81     int m = (l+r)>>1;
     82     if(p<=m)
     83         update(p,d,l,m,w<<1);
     84     else
     85         update(p,d,m+1,r,w<<1|1);
     86     up(w);
     87 }
     88 void update1(int a,int b,LL d,int l,int r,int w)
     89 {
     90     if(a<=l&&b>=r)
     91     {
     92         s[w] = (s[w]*d)%mod;
     93         lz[w] = (lz[w]*d)%mod;
     94         return ;
     95     }
     96     down(w,r-l+1);
     97     int m = (l+r)>>1;
     98     if(a<=m) update1(a,b,d,l,m,w<<1);
     99     if(b>m) update1(a,b,d,m+1,r,w<<1|1);
    100     up(w);
    101 }
    102 LL query(int a,int b,int l,int r,int w)
    103 {
    104     if(a<=l&&b>=r) return s[w];
    105     int m = (l+r)>>1;
    106     LL res = 0;
    107     if(a<=m) res+=query(a,b,l,m,w<<1);
    108     if(b>m) res = (res+query(a,b,m+1,r,w<<1|1))%mod;
    109     return res;
    110 }
    111 void up1(int w)
    112 {
    113     sum[w] = sum[w<<1]+sum[w<<1|1];
    114 }
    115 void build1(int l,int r,int w)
    116 {
    117     if(l==r)
    118     {
    119         sum[l] = 0;
    120         return ;
    121     }
    122     int m = (l+r)>>1;
    123     build1(l,m,w<<1);
    124     build1(m+1,r,w<<1|1);
    125     up1(w);
    126 }
    127 void update2(int p,int l,int r,int w)
    128 {
    129     if(l==r)
    130     {
    131         sum[w] = 1;
    132         return ;
    133     }
    134     int m = (l+r)>>1;
    135     if(p<=m)
    136     update2(p,l,m,w<<1);
    137     else update2(p,m+1,r,w<<1|1);
    138     up1(w);
    139 }
    140 int query1(int a,int b,int l,int r,int w)
    141 {
    142     if(a<=l&&b>=r)
    143     {
    144         return sum[w];
    145     }
    146     int m = (l+r)>>1;
    147     int res=0;
    148     if(a<=m) res+=query1(a,b,l,m,w<<1);
    149     if(b>m) res+=query1(a,b,m+1,r,w<<1|1);
    150     return res;
    151 }
    152 int main()
    153 {
    154     int n,i;
    155     while(scanf("%d",&n)!=EOF)
    156     {
    157         memset(sum,0,sizeof(sum));
    158         for(i = 1; i<= n; i++)
    159         {
    160             scanf("%d%d",&p[i].a,&p[i].b);
    161             p[i].id = i;
    162         }
    163         sort(p+1,p+n+1,cmp);
    164         for(i = 1; i <= n ; i++)
    165         {
    166             po[p[i].id] = i;
    167         }
    168         sort(p+1,p+n+1,cmpp);
    169         build(1,n,1);
    170         LL ans = 0;
    171         build1(1,n,1);
    172         for(i = 1; i <= n; i++)
    173         {
    174             int k = query1(1,po[p[i].id],1,n,1);
    175             //cout<<k<<" "<<p[i].a<<" "<<po[p[i].id]<<endl;
    176             update2(po[p[i].id],1,n,1);
    177             update(po[p[i].id],mul(2,p[i].a+k,mod),1,n,1);
    178             LL ss = query(po[p[i].id],n,1,n,1);
    179            // cout<<ss<<endl;
    180             ans=(ans+(mul(3,p[i].b,mod)*ss)%mod)%mod;
    181             if(po[p[i].id]<n)
    182             update1(po[p[i].id]+1,n,2,1,n,1);
    183         }
    184         printf("%I64d
    ",ans);
    185     }
    186     return 0;
    187 }
    View Code
  • 相关阅读:
    Client-Side Template Injection with AngularJS
    502 BAD GATEWAY-k8s的cgroup限制了apache的可用内存
    alertmanager的web页面显示UTC时间的问题
    结构化数据
    天马行空 + 行业趋势
    elasticsearch备份脚本
    mongodb的安装部署-备份
    redis安装-备份-恢复 -- redislive -- web管理工具
    elasticsearch 的post put 方式的对比 setting mapping设置
    用elasticsearchdump备份恢复数据
  • 原文地址:https://www.cnblogs.com/shangyu/p/3893696.html
Copyright © 2011-2022 走看看