zoukankan      html  css  js  c++  java
  • A * B Problem Plus(fft)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1402

    hdu_1402:A * B Problem Plus

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 15419    Accepted Submission(s): 3047


    Problem Description
    Calculate A * B.
     
    Input
    Each line will contain two integers A and B. Process to end of file.

    Note: the length of each integer will not exceed 50000.
     
    Output
    For each case, output A * B in one line.
     
    Sample Input
    1 2 1000 2
     
    Sample Output
    2 2000
     
    Author
    DOOM III
     
    题解: 练习用fft实现大数的乘法达到O(nlog(n))的算法,两个数相乘看成是两个多项式的乘法,这样多项式中的x=10,fft套用模板即可
    给出代码:
      1 #include<cstdio>
      2 #include<cstring>
      3 #include<algorithm>
      4 #include<cmath>
      5 using namespace std;
      6 const int MAX=300005;
      7 const double PI=acos(-1.0),eps=1e-8;;
      8 double cof1[MAX], cof2[MAX];
      9 int n, k, permutation[MAX];
     10 char s1[MAX],s2[MAX];
     11 int ans[MAX];
     12 struct complex {//复数
     13     double r, v;
     14     complex operator + (complex& obj) {
     15         complex temp;
     16         temp.r = r + obj.r;
     17         temp.v = v + obj.v;
     18         return temp;
     19     }
     20     complex operator - (complex& obj) {
     21         complex temp;
     22         temp.r = r - obj.r;
     23         temp.v= v - obj.v;
     24         return temp;
     25     }
     26     complex operator * ( complex& obj) {
     27         complex temp;
     28         temp.r = r*obj.r - v*obj.v;
     29         temp.v = r*obj.v + v*obj.r;
     30         return temp;
     31     }
     32 } p1[MAX], p2[MAX], omiga[MAX], result1[MAX], result2[MAX];
     33 void caculate_permutation(int s, int interval, int w, int next) {
     34     if(interval==n) {
     35         permutation[w] = s;
     36         return ;
     37     }
     38     caculate_permutation(s,interval*2, w, next/2);
     39     caculate_permutation(s+interval, interval*2, w+next, next/2);
     40 }
     41 void fft(complex transform[], complex p[]) {
     42     int i, j, l, num, m;
     43     complex temp1, temp2;
     44     for(i=0; i<n; i++)transform[i] = p[ permutation[i] ] ;
     45     num = 1, m = n;
     46     for(i=1; i<=k; i++) {
     47         for(j=0; j<n; j+=num*2)
     48             for(l=0; l<num; l++)
     49                 temp2 = omiga[m*l]*transform[j+l+num],
     50                         temp1 = transform[j+l],
     51                                 transform[j+l] = temp1 + temp2,
     52                                                  transform[j+l+num] = temp1 - temp2;
     53         num*=2,m/=2;
     54     }
     55 }
     56 void polynomial_by(int n1,int n2) {//多项式乘法,cof1、cof2保存的是a[0],a[1]..a[n-1]的值(a[i]*x^i)
     57     int i;
     58     double angle;
     59     k = 0, n = 1;
     60     while(n<n1+n2-1)k++,n*=2;
     61     for(i=0; i<n1; i++)p1[i].r = cof1[i], p1[i].v = 0;
     62     while(i<n)p1[i].r = p1[i].v = 0, i++;
     63     for(i=0; i<n2; i++)p2[i].r = cof2[i], p2[i].v = 0;
     64     while(i<n)p2[i].r = p2[i].v = 0, i++;
     65     caculate_permutation(0,1,0,n/2);
     66     angle = PI/n;
     67     for(i=0; i<n; i++)omiga[i].r = cos(angle*i), omiga[i].v = sin(angle*i);
     68     fft(result1,p1);
     69     fft(result2,p2);
     70     for(i=0; i<n; i++)result1[i]= result1[i]*result2[i];
     71     for(i=0; i<n; i++)omiga[i].v = -omiga[i].v;
     72     fft(result2, result1);
     73     for(i=0; i<n; i++)result2[i].r/=n;
     74     i = n -1;
     75     while(i&&fabs(result2[i].r)<eps)i--;
     76     n = i+1;
     77     while(i>=0) ans[i]=(int)(result2[i].r+0.5), i--;
     78 }
     79 int main() {
     80     while(scanf("%s",s1)!=EOF){
     81         scanf("%s",s2);
     82         int n1=strlen(s1),n2=strlen(s2);
     83         for(int i=0;i<n1;i++){
     84             cof1[i]=s1[n1-1-i]-'0';
     85         }
     86         for(int i=0;i<n2;i++){
     87             cof2[i]=s2[n2-1-i]-'0';
     88         }
     89         memset(ans,0,sizeof(ans));
     90         polynomial_by(n1,n2);
     91         for(int i=0;i<n;i++){
     92             if(ans[i]>=10){
     93                 ans[i+1]+=ans[i]/10;
     94                 ans[i]%=10;
     95             }
     96         }
     97         while(ans[n]>0){
     98             if(ans[n]>=10){
     99                 ans[n+1]+=ans[n]/10;
    100                 ans[n]%=10;
    101             }
    102             n++;
    103         }
    104         for(int i=n-1;i>=0;i--){
    105             putchar('0'+ans[i]);
    106         }
    107         puts("");
    108     }
    109     return 0;
    110 }
  • 相关阅读:
    UVa OJ 120
    ACM--string常见用法
    log4j
    总结13.11.9
    Java 动态生成 PDF 文件
    Linux_CentOS-服务器搭建 <七>
    关于dao层的封装和前端分页的结合(文章有点长,耐心点哦)
    Linux_CentOS-服务器搭建 <六>
    Linux_CentOS-服务器搭建 <五> 补充
    JQ获取CKeditor的值
  • 原文地址:https://www.cnblogs.com/shanyr/p/4868770.html
Copyright © 2011-2022 走看看