zoukankan      html  css  js  c++  java
  • poj 1458 Common Subsequence

    Common Subsequence
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 46387   Accepted: 19045

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    Source

     
    就是求最长公共子序列
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    using namespace std;
    #define N 1010
    char x[N],y[N];
    short int f[N][N];
    int main(){
        while(scanf("%s%s",x+1,y+1)==2){
            int lx=strlen(x+1),ly=strlen(y+1);
            for(int i=1;i<=lx;i++)
                for(int j=1;j<=ly;j++)
                    if(x[i]==y[j])
                        f[i][j]=f[i-1][j-1]+1;
                    else
                        f[i][j]=max(f[i-1][j],f[i][j-1]);
            printf("%d
    ",f[lx][ly]);
            for(int i=0;i<=lx;i++)for(int j=0;j<=ly;j++)f[i][j]=0;        
        }
        return 0;
    }
  • 相关阅读:
    Hadoop HDFS的Shell操作实例
    我来阿里的2年
    设计模式之迪米特原则(LoD)
    设计模式之接口隔离原则
    设计模式之依赖倒置原则
    设计模式之里氏替换原则(LSP)
    设计模式之单一职责原则(SRP)
    Android开发系列之性能优化
    Android开发系列之屏幕密度和单位转换
    Android开发系列之ListView
  • 原文地址:https://www.cnblogs.com/shenben/p/5495580.html
Copyright © 2011-2022 走看看