3876: [Ahoi2014]支线剧情
Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1538 Solved: 940
[Submit][Status][Discuss]
Description
【故事背景】
宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等。不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩怨情仇的剧情。这些游戏往往
都有很多的支线剧情,现在JYY想花费最少的时间看完所有的支线剧情。
【问题描述】
JYY现在所玩的RPG游戏中,一共有N个剧情点,由1到N编号,第i个剧情点可以根据JYY的不同的选择,而经过不同的支线剧情,前往Ki种不同的新的剧情点。当然如果为0,则说明i号剧情点是游戏的一个结局了。
JYY观看一个支线剧情需要一定的时间。JYY一开始处在1号剧情点,也就是游戏的开始。显然任何一个剧情点都是从1号剧情点可达的。此外,随着游戏的进行,剧情是不可逆的。所以游戏保证从任意剧情点出发,都不能再回到这个剧情点。由于JYY过度使用修改器,导致游戏的“存档”和“读档”功能损坏了,
所以JYY要想回到之前的剧情点,唯一的方法就是退出当前游戏,并开始新的游戏,也就是回到1号剧情点。JYY可以在任何时刻退出游戏并重新开始。不断开始新的游戏重复观看已经看过的剧情是很痛苦,JYY希望花费最少的时间,看完所有不同的支线剧情。
Input
输入一行包含一个正整数N。
接下来N行,第i行为i号剧情点的信息;
第一个整数为,接下来个整数对,Bij和Tij,表示从剧情点i可以前往剧
情点,并且观看这段支线剧情需要花费的时间。
Output
输出一行包含一个整数,表示JYY看完所有支线剧情所需要的最少时间。
Sample Input
6
2 2 1 3 2
2 4 3 5 4
2 5 5 6 6
0
0
0
2 2 1 3 2
2 4 3 5 4
2 5 5 6 6
0
0
0
Sample Output
24
HINT
JYY需要重新开始3次游戏,加上一开始的一次游戏,4次游戏的进程是
1->2->4,1->2->5,1->3->5和1->3->6。
对于100%的数据满足N<=300,0<=Ki<=50,1<=Tij<=300,Sigma(Ki)<=5000
Source
题意:给定一个DAG,1为起始点,任意一个点可以直接回到1,每条边有经过代价,求一种最优方案使得每条边至少经过一次,代价最小。
暴力:枚举终点,非严格次短路更新。
时间复杂度:O(p*s*nlogn){p为终点数,s为1->一终点路径上点的出度的乘积,nlogn为堆优化的dijkstra的时间}
考虑极端情况:s可以达到2^n(可以想象成一个树,树根为1,叶子节点全都只连同一个节点)
显然:TLE
正解:无源汇有下界最小费用可行流。
具体建图如下:
对于x->y,费用为z
S向y建容量为1,费用为z的边(对应无源汇里的入度处理)
x向y建容量INF,费用为z的边(即自由流)
对于每一个点x,假设其出度为a
x向T建容量为a,费用为0的边(出度处理)(注意这里不要加上费用,因为已经在入度处理的时候就加过了)
x向1建容量INF,费用为0的边(对应题意)
然后跑最小费用流就可以了。
#include<cstdio> #include<cstring> #include<iostream> #define EF if(ch==EOF) return x; using namespace std; const int N=5e4+5; const int inf=2e9; struct data{int x,y;}f[N]; struct edge{int v,next,cap,cost;}e[N<<1];int tot=1,head[N]; int n,m,cnt,ans,S,T,rd[N],cd[N],dis[N],pre[N],q[N<<1];bool vis[N]; inline int read(){ int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;EF;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } void add(int x,int y,int z,int cost=0){ e[++tot].v=y;e[tot].cap=z;e[tot].cost=cost;e[tot].next=head[x];head[x]=tot; e[++tot].v=x;e[tot].cap=0;e[tot].cost=-cost;e[tot].next=head[y];head[y]=tot; } bool spfa(){ memset(vis,0,sizeof vis); memset(dis,0x3f,sizeof dis); unsigned short h=0,t=1;q[t]=S;dis[S]=0;vis[S]=1; while(h!=t){ int x=q[++h];vis[x]=0; for(int i=head[x];i;i=e[i].next){ if(e[i].cap&&dis[e[i].v]>dis[x]+e[i].cost){ dis[e[i].v]=dis[x]+e[i].cost; pre[e[i].v]=i; if(!vis[e[i].v]){ vis[e[i].v]=1; q[++t]=e[i].v; } } } } return dis[T]<0x3f3f3f3f; } int augment(){ int flow=0x3f3f3f3f; for(int i=T;i!=S;i=e[pre[i]^1].v) flow=min(flow,e[pre[i]].cap); for(int i=T;i!=S;i=e[pre[i]^1].v){ e[pre[i]].cap-=flow; e[pre[i]^1].cap+=flow; } return dis[T]*flow; } void MCMF(){ while(spfa()) ans+=augment(); } int main(){ n=read();S=0,T=n+1; for(int i=1,x,y,z;i<=n;i++){ x=read();cd[i]=x; if(i!=1) add(i,1,inf); while(x--) y=read(),z=read(),ans+=z,rd[y]++,add(i,y,inf,z); } for(int i=2;i<=n;i++){ if(rd[i]>cd[i]) add(S,i,rd[i]-cd[i]); else add(i,T,cd[i]-rd[i]); } MCMF(); printf("%d",ans); return 0; }
实际上有一个很大的建图优化,也是无源汇建图的优化,即合并入出度并且相互抵消。但是对于这道题就不好做,因为有费用,不过可以这么想:既然每一条边都要走,我们就直接把费用抽出来,即答案一开始就为所有边走一次的代价,然后这样入度的费用就变为0了。然后再与出度进行抵消,最后边的数量大大减少。