zoukankan      html  css  js  c++  java
  • HDU 2639 Bone Collector II

    Bone Collector II

    Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1158    Accepted Submission(s): 566


    Problem Description
    The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:

    Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602

    Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.

    If the total number of different values is less than K,just ouput 0.
     

    Input
    The first line contain a integer T , the number of cases.
    Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
     

    Output
    One integer per line representing the K-th maximum of the total value (this number will be less than 231).
     

    Sample Input
    3
    5 10 2
    1 2 3 4 5
    5 4 3 2 1
    5 10 12
    1 2 3 4 5
    5 4 3 2 1
    5 10 16
    1 2 3 4 5
    5 4 3 2 1
     

    Sample Output
    12
    2
    0
     
    解题代码:
    View Code
     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <string.h>
     4 using namespace std;
     5 
     6 #define Max 1010
     7 struct node
     8 {
     9     int s;
    10     int v;
    11 }boot[Max];
    12 int dp[Max][35];
    13 int A[35], B[35];
    14 
    15 int main()
    16 {
    17     int T;
    18     int N, V, d;
    19     int i, j;
    20     scanf ("%d", &T);
    21     while (T--)
    22     {
    23         memset(dp, 0, sizeof(dp));
    24         scanf ("%d%d%d", &N, &V, &d);
    25         for (i = 1; i <= N; i++)
    26             scanf ("%d", &boot[i].s);
    27         for (i = 1; i <= N; i++)
    28             scanf ("%d", &boot[i].v);
    29         for (i = 1; i <= N; i ++)
    30         {
    31             for (j = V; j >= boot[i].v; j--)
    32             {
    33                 for (int k = 1; k <= d; k ++)
    34                 {
    35                     A[k] = dp[j - boot[i].v][k] + boot[i].s;
    36                     B[k] = dp[j][k];
    37                 }
    38                 A[d+1] = B[d+1] = -1;
    39                 int a, b, c;
    40                 a = b = c = 1;
    41                 while (c <= d && (A[a] != -1 || B[b] != -1))
    42                 {
    43                     if (A[a] > B[b])
    44                     {
    45                         dp[j][c] = A[a];
    46                         a ++;
    47                     }
    48                     else
    49                     {
    50                         dp[j][c] = B[b];
    51                         b ++;
    52                     }
    53                     if (dp[j][c] != dp[j][c-1])
    54                         c ++;
    55                 }
    56             }
    57         }
    58         printf ("%d\n", dp[V][d]);
    59     }
    60 }
     
     
  • 相关阅读:
    【动态规划】数字三角形4
    【动态规划】数字三角形3
    【动态规划】数字三角形2
    被破坏的电力系统
    二分法求函数的零点
    膨胀的木棍
    不重复地输出数
    和为给定数
    乘法游戏
    「AHOI2014/JSOI2014」拼图
  • 原文地址:https://www.cnblogs.com/shengshouzhaixing/p/3008980.html
Copyright © 2011-2022 走看看