zoukankan      html  css  js  c++  java
  • 「数学」三角函数公式以及部分证明

    定义

    (Rt riangle ABC)中,如下有六个三角函数的定义:

    正弦:

    [sin A = frac{a}{c} ]

    级数表示:(sin (x)==sum_{k=0}^{infty} frac{(-1)^{k} x^{1+2k}}{(1+2k)!})

    余弦:

    [cos A = frac{b}{c} ]

    级数表示:(cos (x)=sum_{k=0}^{infty} frac{(-1)^{k} x^{2 k}}{(2 k) !})

    正切:

    [ an A = frac{a}{b} ]

    级数表示:( an (x)=i+2 i sum_{k=1}^{infty}(-1)^{k} q^{2 k} color{gray} extrm{ for } q=e^{i x})

    余切:

    [cot A = frac{b}{a} ]

    级数表示:(cot (x)=-i-2 i sum_{k=1}^{infty} q^{2 k} color{gray} ext { for } q=e^{i x})

    正割:

    [sec A = frac{c}{b} ]

    级数表示:(sec (x)=-2 sum_{k=1}^{infty}(-1)^{k} q^{-1+2 k} color{gray} ext { for } q=e^{i x})

    余割:

    [csc A = frac{c}{a} ]

    级数表示:(csc (x)=-2 i sum_{k=1}^{infty} q^{-1+2 k} color{gray} ext { for } q=e^{i x})

    诱导公式

    链接

    关系 & 定理 & 公式

    倒数关系

    [cos alpha cdot sec alpha = 1 ]

    [sin alpha cdot csc alpha = 1 ]

    [ an alpha cdot cot alpha = 1 ]

    平方关系

    [1 + an ^ 2 alpha = sec ^ 2 alpha ]

    [1 + cot ^ 2 alpha = csc ^ 2 alpha ]

    [sin^2 alpha + cos ^ 2 alpha = 1 ]

    商的关系

    [frac{sin alpha}{cos alpha} = frac{sec alpha}{csc alpha} = an alpha ]

    [frac{cos alpha}{sin alpha} = frac{csc alpha}{sec alpha} = cot alpha ]

    正弦定理

    [frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C} = 2R = D ]

    (R) 为三角形外切圆半径,(D) 为三角形外切圆直径。

    证明:

    如图在 ( riangle ABC) 中可得 (sin A = frac{h}{b})(sin B = frac{h}{a})

    [ herefore h = sin A imes b, h = sin B imes a \\ herefore sin A imes b = sin B imes a \\ herefore frac{sin A}{a} = frac{sin B}{b} \\ herefore frac{a}{sin A} = frac{b}{sin B} \\ extrm{同理:} frac{a}{sin A} = frac{c}{sin C} \\ herefore frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C} ]

    如图, ( riangle CDB) 中线段 (CD) 经过圆心,所以 (angle CBD = 90 ^ circ)(CD = 2R)

    [ herefore sin A = sin D = frac{CB}{CD} = frac{a}{2R} \\ herefore frac{a}{sin A} = 2R \\ extrm{同理:} frac{b}{sin B} = 2R, frac{c}{sin C} = 2R \\ herefore frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C} = 2R = D ]

    余弦定理

    [a ^ 2 = b ^ 2 + c ^ 2 - 2bccos A, b ^ 2 = a ^ 2 + c ^ 2 - 2accos B, c ^ 2 = a ^ 2 + b ^ 2 - 2abcos C \\ m{或} \\ cos A = frac{b ^ 2 + c ^ 2 - a ^ 2}{2bc}, cos B = frac{a ^ 2 + c ^ 2 - b ^ 2}{2ac}, cos C = frac{a ^ 2 + b ^ 2 - c ^ 2}{2ab} ]

    证明:

    如图,在 ( riangle ABC) 中,令(vec{AB} = vec{c}, vec{CB} = vec{a}, vec{CA} = vec{b})

    [ herefore vec{c} = vec{AB} = vec{CB} - vec{CA} = vec{a} - vec{b} \\ herefore (vec{c}) ^ 2 = (vec{a} - vec{b}) ^ 2 = vec{a} ^ 2 + vec{b} ^ 2 - 2 vec{a} cdot vec{b} \\ herefore |vec{c}| ^ 2 = |vec{a}| ^ 2 + |vec{b}| ^ 2 - 2 |vec{a}| cdot |vec{b}| cdot cos C \\ herefore c ^ 2 = a ^ 2 + b ^ 2 - 2abcos C \\ 同理:cos A = frac{b ^ 2 + c ^ 2 - a ^ 2}{2bc}, cos B = frac{a ^ 2 + c ^ 2 - b ^ 2}{2ac} ]

    和角公式

    [sin(alpha + eta) = sin alpha cos eta + cos alpha sin eta ]

    [cos(alpha + eta) = cos alpha cos eta - sin alpha sin eta ]

    [ an(alpha + eta) = frac{ an alpha + an eta}{1 - an alpha an eta} ]

    差角公式

    [sin(alpha - eta) = sin alpha cos eta - cos alpha sin eta ]

    [cos(alpha - eta) = cos alpha cos eta + sin alpha sin eta ]

    [ an(alpha - eta) = frac{ an alpha - an eta}{1 + an alpha an eta} ]

    和差化积

    [sin alpha+sin eta=2 sin left(frac{alpha+eta}{2} ight) cos left(frac{alpha-eta}{2} ight) ]

    [sin alpha-sin eta=2 sin left(frac{alpha-eta}{2} ight) cos left(frac{alpha+eta}{2} ight) ]

    [cos alpha+cos eta=2 cos left(frac{alpha+eta}{2} ight) cos left(frac{alpha-eta}{2} ight) ]

    [cos alpha-cos eta=-2 sin left(frac{alpha+eta}{2} ight) sin left(frac{alpha-eta}{2} ight) ]

    积化和差

    [cos alpha sin eta=frac{1}{2}[sin (alpha+eta)-sin (alpha-eta)] ]

    [sin alpha cos eta=frac{1}{2}[sin (alpha+eta)+sin (alpha-eta)] ]

    [cos alpha cos eta=frac{1}{2}[cos (alpha+eta)+cos (alpha-eta)] ]

    [sin alpha sin eta=-frac{1}{2}[cos (alpha+eta)-cos (alpha-eta)] ]

    倍角公式

    [sin 2 alpha = 2 sin alpha cos alpha ]

    [cos 2 alpha = cos ^ 2 alpha - sin ^ 2 alpha ]

    [ an 2 alpha = frac{2 an alpha}{1 - an ^ 2 alpha} ]

    [cot 2 alpha=frac{cot ^{2} alpha-1}{2 cot alpha} ]

    [sec 2 alpha=frac{sec ^{2} alpha}{1- an ^{2} alpha} ]

    [csc 2 alpha=frac{1}{2} sec alpha csc alpha ]

    半角公式

    [sin left(frac{alpha}{2} ight) = sqrt{frac{1-cos alpha}{2}} ]

    [cos left(frac{alpha}{2} ight) = sqrt{frac{1+cos alpha}{2}} ]

    [ an left(frac{alpha}{2} ight) = csc alpha-cot alpha ]

    [cot left(frac{alpha}{2} ight) = csc alpha+cot alpha ]

    [sec left(frac{alpha}{2} ight) = sqrt{frac{2 sec alpha}{sec alpha+1}} ]

    [csc left(frac{alpha}{2} ight) = sqrt{frac{2 sec alpha}{sec alpha-1}} ]

    Attachment

    常用三角函数值对照表:

    (alpha) 弧度 (sin) (cos) ( an)
    (0^circ) (0) (0) (1) (0)
    (15^circ) (frac{pi}{12}) (frac{sqrt{6} - sqrt{2}}{4}) (frac{sqrt{6} + sqrt{2}}{4}) (2 - sqrt{3})
    (22.5^circ) (frac{pi}{8}) (frac{sqrt{2 - sqrt{2}}}{2}) (frac{sqrt{2 + sqrt{2}}}{2}) (-1 + sqrt{2})
    (30^circ) (frac{pi}{6}) (frac{1}{2}) (frac{sqrt{3}}{2}) (frac{sqrt{3}}{3})
    (45^circ) (frac{pi}{4}) (frac{sqrt{2}}{2}) (frac{sqrt{2}}{2}) (1)
    (60^circ) (frac{pi}{3}) (frac{sqrt{3}}{2}) (frac{1}{2}) (sqrt{3})
    (75^circ) (frac{5pi}{12}) (frac{sqrt{6} + sqrt{2}}{4}) (frac{sqrt{6} - sqrt{2}}{4}) (2 + sqrt{3})
    (90^circ) (frac{pi}{2}) (1) (0) ( m{无})
    (120^circ) (frac{2pi}{3}) (frac{sqrt{3}}{2}) (-frac{1}{2}) (-sqrt{3})
    (135^circ) (frac{3pi}{4}) (frac{sqrt{2}}{2}) (-frac{sqrt{2}}{2}) (-1)
    (150^circ) (frac{5pi}{6}) (frac{1}{2}) (-frac{sqrt{3}}{2}) (frac{sqrt{3}}{3})
    (180^circ) (pi) (0) (-1) (0)
    (270^circ) (frac{3pi}{2}) (-1) (0) ( m{无})
    (360^circ) (2pi) (0) (1) (0)
  • 相关阅读:
    606. Construct String from Binary Tree
    696. Count Binary Substrings
    POJ 3255 Roadblocks (次短路)
    POJ 2823 Sliding Window (单调队列)
    POJ 1704 Georgia and Bob (博弈)
    UVa 1663 Purifying Machine (二分匹配)
    UVa 10801 Lift Hopping (Dijkstra)
    POJ 3281 Dining (网络流之最大流)
    UVa 11100 The Trip, 2007 (题意+贪心)
    UVaLive 4254 Processor (二分+优先队列)
  • 原文地址:https://www.cnblogs.com/shenxiaohuang/p/12579303.html
Copyright © 2011-2022 走看看