zoukankan      html  css  js  c++  java
  • Search a 2D Matrix

    Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

    • Integers in each row are sorted from left to right.
    • The first integer of each row is greater than the last integer of the previous row.

    For example,

    Consider the following matrix:

    [
      [1,   3,  5,  7],
      [10, 11, 16, 20],
      [23, 30, 34, 50]
    ]
    

    Given target = 3, return true.

    注意这道题给出的矩阵,每行都是有序数组,并且每一行的结尾数字是小于下一行的开头数字的。注意这道题与剑指offer上的《面试题3:二维数组中的查找》给出的二维数组的特性是不一样的。这道题有明显的使用二分搜索的特点。

    一种做法是我一开始想到,先二分到行,确定一行用于查找,之后再在行里查找,感觉我还是没有把二分越边界的情况想的特别清楚,代码有些冗长,时间复杂度是O(logm+logn),空间复杂度O(1),代码如下:

    class Solution(object):
        def searchMatrix(self, matrix, target):
            """
            :type matrix: List[List[int]]
            :type target: int
            :rtype: bool
            """
            if not matrix or not matrix[0] or target < matrix[0][0] or target > matrix[-1][-1]:
                return False 
            m = len(matrix)
            n = len(matrix[0])
            
            l = 0
            r = m-1
            
            while l < r:
                mid = l + (r-l)/2
                if target > matrix[mid][-1]:
                    l = mid+1
                elif target < matrix[mid][0]:
                    r = mid-1
                else:
                    l = r = mid
                    break
            if l != r:
                return False
                
    
            if target < matrix[l][0] or target > matrix[l][-1]:
                return False
            k = l
            l = 0
            r = n-1
            while l <= r:
                mid = l+(r-l)/2
                if target < matrix[k][mid]:
                    r = mid -1 
                elif target > matrix[k][mid]:
                    l = mid +1
                else:
                    return True
            return False

    另外一种简洁直接的解法为将二维数组看作一维排序数组来考虑,唯一需要注意的是如何将mid的值转化为实际二维数组中的index,注意是除以行宽呀,盆友。时间复杂度O(log(mn))=O(log(m)+log(n)),代码如下,简洁许多:

    class Solution(object):
        def searchMatrix(self, matrix, target):
            """
            :type matrix: List[List[int]]
            :type target: int
            :rtype: bool
            """
            if not matrix or not matrix[0]:
                return False
            m = len(matrix)
            n = len(matrix[0])
            
            l = 0
            r = m*n -1
            while l <= r:
                mid = l + (r-l)/2
                if target < matrix[mid/n][mid%n]:
                    r = mid -1
                elif target > matrix[mid/n][mid%n]:
                    l = mid +1
                else:
                    return True
            return False
  • 相关阅读:
    LeetCode153 Find Minimum in Rotated Sorted Array. LeetCode162 Find Peak Element
    LeetCode208 Implement Trie (Prefix Tree). LeetCode211 Add and Search Word
    LeetCode172 Factorial Trailing Zeroes. LeetCode258 Add Digits. LeetCode268 Missing Number
    LeetCode191 Number of 1 Bits. LeetCode231 Power of Two. LeetCode342 Power of Four
    LeetCode225 Implement Stack using Queues
    LeetCode150 Evaluate Reverse Polish Notation
    LeetCode125 Valid Palindrome
    LeetCode128 Longest Consecutive Sequence
    LeetCode124 Binary Tree Maximum Path Sum
    LeetCode123 Best Time to Buy and Sell Stock III
  • 原文地址:https://www.cnblogs.com/sherylwang/p/5488905.html
Copyright © 2011-2022 走看看