zoukankan      html  css  js  c++  java
  • Search a 2D Matrix

    Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

    • Integers in each row are sorted from left to right.
    • The first integer of each row is greater than the last integer of the previous row.

    For example,

    Consider the following matrix:

    [
      [1,   3,  5,  7],
      [10, 11, 16, 20],
      [23, 30, 34, 50]
    ]
    

    Given target = 3, return true.

    注意这道题给出的矩阵,每行都是有序数组,并且每一行的结尾数字是小于下一行的开头数字的。注意这道题与剑指offer上的《面试题3:二维数组中的查找》给出的二维数组的特性是不一样的。这道题有明显的使用二分搜索的特点。

    一种做法是我一开始想到,先二分到行,确定一行用于查找,之后再在行里查找,感觉我还是没有把二分越边界的情况想的特别清楚,代码有些冗长,时间复杂度是O(logm+logn),空间复杂度O(1),代码如下:

    class Solution(object):
        def searchMatrix(self, matrix, target):
            """
            :type matrix: List[List[int]]
            :type target: int
            :rtype: bool
            """
            if not matrix or not matrix[0] or target < matrix[0][0] or target > matrix[-1][-1]:
                return False 
            m = len(matrix)
            n = len(matrix[0])
            
            l = 0
            r = m-1
            
            while l < r:
                mid = l + (r-l)/2
                if target > matrix[mid][-1]:
                    l = mid+1
                elif target < matrix[mid][0]:
                    r = mid-1
                else:
                    l = r = mid
                    break
            if l != r:
                return False
                
    
            if target < matrix[l][0] or target > matrix[l][-1]:
                return False
            k = l
            l = 0
            r = n-1
            while l <= r:
                mid = l+(r-l)/2
                if target < matrix[k][mid]:
                    r = mid -1 
                elif target > matrix[k][mid]:
                    l = mid +1
                else:
                    return True
            return False

    另外一种简洁直接的解法为将二维数组看作一维排序数组来考虑,唯一需要注意的是如何将mid的值转化为实际二维数组中的index,注意是除以行宽呀,盆友。时间复杂度O(log(mn))=O(log(m)+log(n)),代码如下,简洁许多:

    class Solution(object):
        def searchMatrix(self, matrix, target):
            """
            :type matrix: List[List[int]]
            :type target: int
            :rtype: bool
            """
            if not matrix or not matrix[0]:
                return False
            m = len(matrix)
            n = len(matrix[0])
            
            l = 0
            r = m*n -1
            while l <= r:
                mid = l + (r-l)/2
                if target < matrix[mid/n][mid%n]:
                    r = mid -1
                elif target > matrix[mid/n][mid%n]:
                    l = mid +1
                else:
                    return True
            return False
  • 相关阅读:
    【未完成0.0】Noip2012提高组day2 解题报告
    【数论+技巧】神奇的Noip模拟试题第二试 T1 素数统计
    Noip2014 提高组 T2 联合权值 连通图+技巧
    Noip2014 提高组 day1 T1· 生活大爆炸版石头剪刀布
    神奇的Noip模拟试题 T3 科技节 位运算
    博客小谈
    神奇的Noip模拟试题一试 2 排队
    神奇的Noip模拟试题第一试 合理种植 枚举+技巧
    使用Desktop App Converter打包桌面应用程序
    Rust Linking With C Library Functions
  • 原文地址:https://www.cnblogs.com/sherylwang/p/5488905.html
Copyright © 2011-2022 走看看