zoukankan      html  css  js  c++  java
  • python 学习总结3 消息队列RabbitMQ

    我们以前学过的队列,在线程中针对同一程序下的多个线程直接 可以实现消息的发送接收,对于进程来说只能在父进程与子进程中或者 父进程 下的子进程之间 进行,都无法实现连个进程的交互

    RabbitMQ 实现了这一功能

    需要先下载RabbitMQ 之后还需要下载erlang语言,因为RabbitMQ就是由erlang编辑而成的!

    生产者:

    import pika
    #我们先生成一个链接的实例
    connection=pika.BlockingConnection(pika.ConnectionParameters("localhost"))
    #开通一个管道
    channer=connection.channel()
    #给管道一个队列,队列的名字叫Hello
    channer.queue_declare(queue="hello")
    #在管道中需要传输的数据格式
    channer.basic_publish(exchange="",routing_key="hello",body="hello world!")
    print(" sent the word!")
    connection.close()

    消费者:

    import pika
    #这三步骤 其实 两个里面都是一样的
    connection=pika.BlockingConnection(pika.ConnectionParameters("localhost"))
    
    channer=connection.channel()
    
    channer.queue_declare("hello")
    
    
    def callback(ch,menthod,properties,body):
        print("recevied %s"%body)
    
    channer.basic_consume(callback,queue="hello",no_ack=True)
    
    print("waiting for message ")
    channer.start_consuming()

     RabbitMQ具有消息分发轮询机制,假如三个consumer一起的话,producer发送会按照,开的顺序来执行 

    如果中途截至的话 他会自动转到下一个 直到全结束!

    RabbitMQ当你发消息的时候,消费者一般不会自动确认 生产者的消息传输完毕 ,所以我们要想保证发一次就接受一次那么 我们就在消费者的callback中加ch.basic_ack(delivery_tag=menthod.delivery_tag) 即可实现

    我们上面实现的RabbitMQ不能实现消息的持久化,如果要想实现持久化 也就是当关闭RabbitMQ时 信息不会消失 

    在代码中channer.queue_declare(queue="hello") 改变成channer.queue_declare(queue="hello",durable=True) 这实现的是队列的持久化

    我们还的实现消息的持久化 channer.basic_consume(callback,queue="hello",no_ack=True,properties=pika.BasicProperties(delivery_mode=2))

    这样综合下来就实现了消息的持久化!

    我们要想实现一种消息的广播模式怎么办? 

    1.给所有人发送消息 !!

    生产者端口:

    import pika
    #我们先生成一个链接的实例
    connection=pika.BlockingConnection(pika.ConnectionParameters("localhost"))
    #开通一个管道
    channer=connection.channel()
    #给管道一个队列,队列的名字叫Hello
    #先给exchange起一个名字,标明其类型
    channer.exchange_declare(exchange="logs",type="fanout")
    message="info:hello world"
    #在管道中需要传输的数据格式,routing_key这里不像非fanout模式需要输入传输内容的队列,body仍然是传输的消息
    channer.basic_publish(exchange="logs",routing_key="",body=message)
    print("we send :",message)
    connection.close()

     消费者端口:

    
    
    import pika

    #这三步骤 其实 两个里面都是一样的
    connection=pika.BlockingConnection(pika.ConnectionParameters("localhost"))

    channer=connection.channel()

    channer.exchange_declare("logs",'fanout')
    #为了保证 每个接受能力不同的进程执行的任务在自身的能力范围内,他的原理就是当一个消息没有处理完成就不会给你穿下一个任务
    result=channer.queue_declare(exclusive=True)
    queue_name=result.method.queue
    print("random queue_name:",queue_name)
    channer.queue_bind(exchange="logs",queue=queue_name)
    print("waiting for message ")
    def callback(ch,method,properties,body):

    print("recevied %r"%body)



    channer.basic_consume(callback,queue=queue_name,no_ack=True)


    channer.start_consuming()
     

    其实上面的代码我一运行会报type的错误 我现在还没找到错误 等我找到立马更新 !!

    2.有选择的给部分人发消息

    import pika
    import sys
    #我们先生成一个链接的实例
    connection=pika.BlockingConnection(pika.ConnectionParameters("localhost"))
    #开通一个管道
    channer=connection.channel()
    #给管道一个队列,队列的名字叫Hello
    #先给exchange起一个名字,标明其类型
    channer.exchange_declare("logs1",'direct')
    servity=sys.argv[1]if len(sys.argv)>1 else "info"
    #传送的消息是后面的命令或者 hello world , 也就是说 命令内容放在了 也就是把消息内容放在了指令中sys.argv[1]中 ,hello world放在了 info中
    message=" ".join(sys.argv[2:]) or "hello world"
    #在管道中需要传输的数据格式,routing_key这里不像非fanout模式需要输入传输内容的队列,body仍然是传输的消息
    channer.basic_publish(exchange="logs1",routing_key=servity,body=message)
    print(" [x] Sent %r:%r" % (servity, message))
    connection.close()
    #接受消息端
    import
    pika import sys #这三步骤 其实 两个里面都是一样的 connection=pika.BlockingConnection(pika.ConnectionParameters("localhost")) channer=connection.channel() channer.exchange_declare("logs1",'direct') #为了保证 每个接受能力不同的进程执行的任务在自身的能力范围内,他的原理就是当一个消息没有处理完成就不会给你穿下一个任务 result=channer.queue_declare(exclusive=True) queue_name=result.method.queue servities=sys.argv[1:] if not servities: sys.stderr.write("Usage: %s [info] [warning] [error] " % sys.argv[0]) sys.exit(1) print(servities) print("random queue_name:",queue_name) for servity in servities: channer.queue_bind(exchange="logs1",queue=queue_name,routing_key=servity) def callback(ch,method,properties,body): print("recevied %r"%body) channer.basic_consume(callback,queue=queue_name,no_ack=True) channer.start_consuming()

     我们上面的选择式的分发只针对一些命令如果我们 要接受mysql 或者 其他的 要怎么办呢 那么我们就需要 topic细致过滤 一下 

    生产者 其实在我的想法中,这个就是在文件名字上面做了些手脚 将以前的一个改为一类

    import pika
    import sys
    
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
    channel = connection.channel()
    
    channel.exchange_declare('topic_logs',
                             'topic')
    
    routing_key = sys.argv[1] if len(sys.argv) > 1 else 'anonymous.info'
    message = ' '.join(sys.argv[2:]) or 'Hello World!'
    channel.basic_publish(exchange='topic_logs',
                          routing_key=routing_key,
                          body=message)
    print(" [x] Sent %r:%r" % (routing_key, message))
    connection.close()

    消费者

    import pika
    import sys
    
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
    channel = connection.channel()
    
    channel.exchange_declare('topic_logs',
                             'topic')
    
    result = channel.queue_declare(exclusive=True)
    queue_name = result.method.queue
    
    binding_keys = sys.argv[1:]
    if not binding_keys:
        sys.stderr.write("Usage: %s [binding_key]...
    " % sys.argv[0])
        sys.exit(1)
    
    for binding_key in binding_keys:
        channel.queue_bind(exchange='topic_logs',
                           queue=queue_name,
                           routing_key=binding_key)
    
    print(' [*] Waiting for logs. To exit press CTRL+C')
    
    def callback(ch, method, properties, body):
        print(" [x] %r:%r" % (method.routing_key, body))
    
    channel.basic_consume(callback,
                          queue=queue_name,
                          no_ack=True)
    
    channel.start_consuming()

     如果我们要实现两个程序之间的缓存机制怎么办?这时候我们就用到了redis

    http://www.cnblogs.com/wupeiqi/articles/5132791.html 详细参考该老师博客

    以前我们用的rabbitMQ都是单向的一个过程,发送执行 但没有返回结果 ,那么我们就让他变成一个双向的过程,但此时我们需要用到的不至就是一个队列了,而是两个队列 为了防止信息紊乱

    producer

    import pika
    import uuid
    class Fibonacciclient(object):
        def __init__(self):
            self.connection=pika.BlockingConnection(pika.ConnectionParameters(
                host="localhost"
            ))
            self.channel=self.connection.channel()
            result=self.channel.queue_declare(exclusive=True)
            #随机生成一个queue
            self.callback_queue=result.method.queue
            #收到的返回消息的调用函数通道途径
            self.channel.basic_consume(self.on_response,no_ack=True,
                                       queue=self.callback_queue)
        def on_response(self,ch,method,props,body):
            if self.corr_id==props.correlation_id:
                #满足条件就会将信息放在reponse中,使其变成真
                self.response=body
        def call(self,n):
            self.response=None
            #生产者产生的一个随机字符序列
            self.corr_id=str(uuid.uuid4())
            #其实发送的原理就是发送一个字典,propertis下对应一些东西,reply_to和Body也有各自的东西都会被消费者接受
            self.channel.basic_publish(exchange="",routing_key="rpc_queue",#声明一个队列的名字
                                       properties=pika.BasicProperties(
                                           reply_to=self.callback_queue,#返回的队列
                                           correlation_id=self.corr_id#核对字符序列
                                       ),
                                       body=str(n)
                                       )
            while self.response is None:
                #这个相当于一个非阻塞的IO模式 ,无论是否有信息都会返回
                self.connection.process_data_events()
                print("no message")
            return int(self.response)
    #创建一个实例,创建的同时也就初始化了管道信息
    fc=Fibonacciclient()
    print(" requesting fib(number)")
    #传参
    response=fc.call(30)
    #返回结果
    print("Got %r"%response)

    consumer

    import pika
    import uuid
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
    channel = connection.channel()
    #传入的队列
    channel.queue_declare(queue="rpc_queue")
    #就是一个处理数的算法 随便改成什么都行
    def fib(n):
        if n == 0:
            return 0
        elif n == 1:
            return 1
        else:
            return fib(n-1) + fib(n-2)
    def on_request(ch,method,props,body):
        n=int(body)
    
        print("fib(%d)"%n)
        response=fib(n)
        ch.basic_publish(exchange="",routing_key=props.reply_to,
                         #收到的又给他发回去,避免的就是多并发的时候会乱
                         properties=pika.BasicProperties(correlation_id=
                                                         props.correlation_id),body=str(response) )
        ch.basic_ack(delivery_tag=method.delivery_tag)#确认信息
    channel.basic_qos(prefetch_count=1)
    channel.basic_consume(on_request,queue="rpc_queue")
    print("waiting!!!")
    channel.start_consuming()

     下面这段代码清晰的看出pexpect的用法

    import pexpect 
    def login(port,user,passwd,ip,command): 
    #发送给服务器的一个登陆请求 等待 确认 ,当i==0是是超时的情况,我们再次发送密码 ,如果是一则表示接受 child
    =pexpect.spawn('ssh -p%s %s@%s "%s"' %(port,user,ip,command)) o='' try: i=child.expect(['[Pp]assword:','continue connecting (yes/no)?']) if i == 0: child.sendline(passwd) elif i == 1: child.sendline('yes') else: pass except pexpect.EOF: child.close() else: o=child.read() child.expect(pexpect.EOF) child.close() return o hosts=file('hosts.list','r') for line in hosts.readlines(): host=line.strip(" ") if host: ip,port,user,passwd,commands= host.split(":") for command in commands.split(","): print "+++++++++++++++ %s run:%s ++++++++++++" % (ip,command), print login(port,user,passwd,ip,command) hosts.close()

    我们可以用pxssh来执行简化的Pexpect

  • 相关阅读:
    WPF基础之内容控件
    WPF基础之路由事件
    WPF基础分享之布局
    JMeter操作手册
    Jmeter安装和配置
    UI自动化--Web Driver小结
    对于自动化测试框架的总结
    UI自动化--selenium webdriver
    postman断言
    接口测试工具---postman的基本使用
  • 原文地址:https://www.cnblogs.com/shidi/p/7491020.html
Copyright © 2011-2022 走看看