带环的单链表:
如上图,List 为一个带有环的单链表,环的大小为5;
证明:
S 为 slow 指针相遇前走的距离,2S 为 fast 指针相遇前走过的距离;
∵ 2S = S + n*R; //n slow,fast指针相遇前 fast 多经历的圈数
S = H_I + R1;
∴S = n*R;
∴n*R = H_I + R1;
∵ R1 + R2 = R;
∴(n-1)*R = H_I - R2;
∴(n-1)*R + R2 = H_I; //结论:(交点到入口点的距离+环长度的整数倍) = 头到入口点的距离
template<class T> ListNode<T>* List<T>::IsRingList() { if (_head == NULL) return NULL; Node* fast = _head,* slow = _head,* Input; while (fast && fast->_next) { if (fast == slow) //链表带环 输出环的长度和入口点 { int count = 1; do { slow = slow->_next; fast = fast->_next->_next; ++count; } while (fast == slow); cout << "环的节点的个数为:" << count << endl; while (Input == slow) { Input = Input->_next; slow = slow->_next; } return Input; }
slow = slow->_next;
fast = fast->_next->_next;
} return NULL; }