zoukankan      html  css  js  c++  java
  • 线性代数 linear algebra

    2.3 实现属于我们自己的向量

    Vector.py

    1.  
      class Vector:
    2.  
      def __init__(self, lst):
    3.  
      self._values = lst
    4.  
      #return len
    5.  
      def __len__(self):
    6.  
      return len(self._values)
    7.  
      #return index th item
    8.  
      def __getitem__(self, index):
    9.  
      return self._values[index]
    10.  
      #direct use call this method
    11.  
      def __repr__(self):
    12.  
      return "Vector({})".format(self._values)
    13.  
      #print call this method
    14.  
      def __str__(self):
    15.  
      return "({})".format(", ".join(str(e) for e in self._values))
    16.  
       
    17.  
       

    main_vector.py

    1.  
      import sys
    2.  
      import numpy
    3.  
      import scipy
    4.  
      from playLA.Vector import Vector
    5.  
       
    6.  
      if __name__ == "__main__":
    7.  
      vec = Vector([5, 2])
    8.  
      print(vec)
    9.  
      print(len(vec))
    10.  
      print("vec[0] = {}, vec[1] = {}".format(vec[0], vec[1]))

    2.5 实现向量的基本运算

    Vector.py

    1.  
      class Vector:
    2.  
      def __init__(self, lst):
    3.  
      self._values = lst
    4.  
      #return len
    5.  
      def __len__(self):
    6.  
      return len(self._values)
    7.  
      #return index th item
    8.  
      def __getitem__(self, index):
    9.  
      return self._values[index]
    10.  
      #direct use call this method
    11.  
      def __repr__(self):
    12.  
      return "Vector({})".format(self._values)
    13.  
      #print call this method
    14.  
      def __str__(self):
    15.  
      return "({})".format(", ".join(str(e) for e in self._values))
    16.  
      #vector add method
    17.  
      def __add__(self, another):
    18.  
      assert len(self) == len(another),"lenth not same"
    19.  
      # return Vector([a + b for a, b in zip(self._values, another._values)])
    20.  
      return Vector([a + b for a, b in zip(self, another)])
    21.  
      #迭代器 设计_values其实是私有成员变量,不想别人访问,所以使用迭代器
    22.  
      #单双下划线开头体现在继承上,如果类内内部使用的变量使用单下划线
    23.  
      def __iter__(self):
    24.  
      return self._values.__iter__()
    25.  
      #sub
    26.  
      def __sub__(self, another):
    27.  
      # return Vector([a + b for a, b in zip(self._values, another._values)])
    28.  
      return Vector([a - b for a, b in zip(self, another)])
    29.  
      #self * k
    30.  
      def __mul__(self, k):
    31.  
      return Vector([k * e for e in self])
    32.  
      # k * self
    33.  
      def __rmul__(self, k):
    34.  
      return Vector([k * e for e in self])
    35.  
      #取正
    36.  
      def __pos__(self):
    37.  
      return 1 * self
    38.  
      #取反
    39.  
      def __neg__(self):
    40.  
      return -1 * self

    main_vector.py

    1.  
      import sys
    2.  
      import numpy
    3.  
      import scipy
    4.  
      from playLA.Vector import Vector
    5.  
       
    6.  
      if __name__ == "__main__":
    7.  
      vec = Vector([5, 2])
    8.  
      print(vec)
    9.  
      print(len(vec))
    10.  
      print("vec[0] = {}, vec[1] = {}".format(vec[0], vec[1]))
    11.  
      vec2 = Vector([3, 1])
    12.  
      print("{} + {} = {}".format(vec, vec2, vec + vec2))
    13.  
      print("{} - {} = {}".format(vec, vec2, vec - vec2))
    14.  
      print("{} * {} = {}".format(vec, 3, vec * 3))
    15.  
      print("{} * {} = {}".format(3, vec, vec * 3))
    16.  
      print("-{} = {}".format(vec, -vec))
    17.  
      print("+{} = {}".format(vec, +vec))

    2.8 实现0向量

    Vector.py

    1.  
      @classmethod
    2.  
      def zero(cls, dim):
    3.  
      return cls([0] * dim)

    main_vector.py

    1.  
      zero2 = Vector.zero(2)
    2.  
      print(zero2)
    3.  
      print("{} + {} = {}".format(vec, zero2, vec + zero2))

    3.2实现向量规范

    Vector.py

    1.  
      # self / k
    2.  
      def __truediv__(self, k):
    3.  
      return Vector((1 / k) * self)
    4.  
      #模
    5.  
      def norm(self):
    6.  
      return math.sqrt(sum(e**2 for e in self))
    7.  
      #归一化
    8.  
      def normalize(self):
    9.  
      if self.norm() < EPSILON:
    10.  
      raise ZeroDivisionError("Normalize error! norm is zero.")
    11.  
      return Vector(self._values)/self.norm()

    main_vector.py

    1.  
      print("normalize vec is ({})".format(vec.normalize()))
    2.  
      print(vec.normalize().norm())
    3.  
      try :
    4.  
      zero2.normalize()
    5.  
      except ZeroDivisionError:
    6.  
      print("cant normalize zero vector {}".format(zero2))

    3.3 向量的点乘

    3.5实现向量的点乘操作

    Vector.py

    1.  
      def dot(self, another):
    2.  
      assert len(self) == len(another), "Error in dot product. Length of vectors must be same."
    3.  
      return sum(a * b for a, b in zip(self, another))

     main_vector.py

        print(vec.dot(vec2))

    3.6向量点乘的应用

    3.7numpy中向量的基本使用

    main_numpy_vector.py

    1.  
      import numpy as np
    2.  
      if __name__ == "__main__":
    3.  
      print(np.__version__)
    4.  
       
    5.  
      lst = [1, 2, 3]
    6.  
      lst[0] = "LA"
    7.  
      print(lst)
    8.  
      #numpy中只能存储一种数据
    9.  
      vec = np.array([1, 2, 3])
    10.  
      print(vec)
    11.  
      # vec[0] = "LA"
    12.  
      # vec[0] = 666
    13.  
      print(vec)
    14.  
      print(np.zeros(5))
    15.  
      print(np.ones(5))
    16.  
      print(np.full(5, 666))
    17.  
       
    18.  
      print(vec)
    19.  
      print("size = ", vec.size)
    20.  
      print("size = ", len(vec))
    21.  
      print(vec[0])
    22.  
      print(vec[-1])
    23.  
      print(vec[0:2])
    24.  
      print(type(vec[0:2]))
    25.  
      #点乘
    26.  
      vec2 = np.array([4, 5, 6])
    27.  
      print("{} + {} = {}".format(vec, vec2, vec + vec2))
    28.  
      print("{} - {} = {}".format(vec, vec2, vec - vec2))
    29.  
      print("{} * {} = {}".format(2, vec, 2 * vec))
    30.  
      print("{} * {} = {}".format(vec, 2, vec * 2))
    31.  
      print("{} * {} = {}".format(vec, vec2, vec * vec2))
    32.  
      print("{}.dot({})= {}".format(vec, vec2, vec.dot(vec2)))
    33.  
      #求模
    34.  
      print(np.linalg.norm(vec))
    35.  
      print(vec/ np.linalg.norm(vec))
    36.  
      print(np.linalg.norm(vec/ np.linalg.norm(vec)))
    37.  
      #为什么输出nan
    38.  
      zero3 = np.zeros(3)
    39.  
      print(zero3 /np.linalg.norm(zero3))

    4矩阵

    4.2实现矩阵

    Matrix.py

    1.  
      from .Vector import Vector
    2.  
      class Matrix:
    3.  
      #list2d二维数组
    4.  
      def __init__(self, list2d):
    5.  
      self._values = [row[:] for row in list2d]
    6.  
      def __repr__(self):
    7.  
      return "Matrix({})".format(self._values)
    8.  
      __str__ = __repr__
    9.  
      def shape(self):
    10.  
      return len(self._values),len(self._values[0])
    11.  
      def row_num(self):
    12.  
      return self.shape()[0]
    13.  
      def col_num(self):
    14.  
      return self.shape()[1]
    15.  
      def size(self):
    16.  
      r, c = self.shape()
    17.  
      return r * c
    18.  
      __len__ = row_num
    19.  
      def __getitem__(self, pos):
    20.  
      r, c =pos
    21.  
      return self._values[r][c]
    22.  
      #第index个行向量
    23.  
      def row_vector(self, index):
    24.  
      return Vector(self._values[index])
    25.  
      def col_vector(self, index):
    26.  
      return Vector([row[index] for row in self._values])

    main_matrix.py

    1.  
      from playLA.Matrix import Matrix
    2.  
      if __name__ == "__main__":
    3.  
      matrix = Matrix([[1, 2],[3, 4]])
    4.  
      print(matrix)
    5.  
      print("matrix.shape = {}".format(matrix.shape()))
    6.  
      print("matrix.size = {}".format(matrix.size()))
    7.  
      print("matrix.len = {}".format(len(matrix)))
    8.  
      print("matrix[0][0]= {}".format(matrix[0, 0]))
    9.  
      print("{}".format(matrix.row_vector(0)))
    10.  
      print("{}".format(matrix.col_vector(0)))

    4.4 实现矩阵的基本计算

    Matrix.py

    1.  
      def __add__(self, another):
    2.  
      assert self.shape() == another.shape(),"ERROR in shape"
    3.  
      return Matrix([[a + b for a, b in zip(self.row_vector(i), another.row_vector(i))]for i in range(self.row_num())])
    4.  
      def __sub__(self, another):
    5.  
      assert self.shape() == another.shape(),"ERROR in shape"
    6.  
      return Matrix([[a - b for a, b in zip(self.row_vector(i), another.row_vector(i))]for i in range(self.row_num())])
    7.  
      def __mul__(self, k):
    8.  
      return Matrix([[e*k for e in self.row_vector(i)] for i in range(self.row_num())])
    9.  
      def __rmul__(self, k):
    10.  
      return self * k
    11.  
      #数量除法
    12.  
      def __truediv__(self, k):
    13.  
      return (1/k) * self
    14.  
      def __pos__(self):
    15.  
      return 1 * self
    16.  
      def __neg__(self):
    17.  
      return -1 * self
    18.  
      @classmethod
    19.  
      def zero(cls, r, c):
    20.  
      return cls([[0]*c for _ in range(r)])

    main_matrix.py

    1.  
      matrix2 = Matrix([[5, 6], [7, 8]])
    2.  
      print("add: {}".format(matrix + matrix2))
    3.  
      print("sub: {}".format(matrix - matrix2))
    4.  
      print("mul: {}".format(matrix * 2))
    5.  
      print("rmul: {}".format(2 * matrix))
    6.  
      print("zero_2_3:{}".format(Matrix.zero(2, 3)))

    4.8实现矩阵乘法

    Matrix.py

    main_matrix.py

    Matrix.py

    1.  
      def dot(self, another):
    2.  
      if isinstance(another, Vector):
    3.  
      assert self.col_num() == len(another), "error in shape"
    4.  
      return Vector([self.row_vector(i).dot(another) for i in range(self.row_num())])
    5.  
      if isinstance(another, Matrix):
    6.  
      assert self.col_num() == another.row_num(),"error in shape"
    7.  
      return Matrix([self.row_vector(i).dot(another.col_vector(j)) for j in range(another.col_num())] for i in range(self.row_num()))

    main_matrix.py

    1.  
      T = Matrix([[1.5, 0], [0, 2]])
    2.  
      p = Vector([5, 3])
    3.  
      print("T.dot(p)= {}".format(T.dot(p)))
    4.  
      P = Matrix([[0, 4, 5], [0, 0, 3]])
    5.  
      print("T.dot(P)={}".format(T.dot(P)))

    4.11 实现矩阵转置和Numpy中的矩阵

    main_numpy_matrix.py

    1.  
      import numpy as np
    2.  
       
    3.  
      if __name__ == "__main__":
    4.  
      #创建矩阵
    5.  
      A = np.array([[1, 2], [3, 4]])
    6.  
      print(A)
    7.  
      #矩阵属性
    8.  
      print(A.shape)
    9.  
      print(A.T)
    10.  
      #获取矩阵元素
    11.  
      print(A[1, 1])
    12.  
      print(A[0])
    13.  
      print(A[:, 0])
    14.  
      print(A[1, :])
    15.  
      #矩阵的基本运算
    16.  
      B = np.array([[5, 6], [7, 8]])
    17.  
      print(A + B)
    18.  
      print(A - B)
    19.  
      print(10 * A)
    20.  
      print(A * 10)
    21.  
      print(A * B)
    22.  
      print(A.dot(B))
    23.  
       
    24.  
       

     
     

    5 矩阵进阶

    5.3 矩阵变换

    main_matrix_transformation.py

    1.  
      import math
    2.  
       
    3.  
      import matplotlib.pyplot as plt
    4.  
      from playLA.Matrix import Matrix
    5.  
      from playLA.Vector import Vector
    6.  
      if __name__ == "__main__":
    7.  
      points = [[0, 0], [0, 5], [3, 5], [3, 4], [1, 4],
    8.  
      [1, 3], [2, 3], [2, 2], [1, 2], [1, 0]]
    9.  
      x = [point[0] for point in points]
    10.  
      y = [point[1] for point in points]
    11.  
      plt.figure(figsize=(5, 5))
    12.  
      plt.xlim(-10, 10)
    13.  
      plt.ylim(-10, 10)
    14.  
      plt.plot(x, y)
    15.  
      # plt.show()
    16.  
      P = Matrix(points)
    17.  
      # T = Matrix([[2, 0], [0, 1.5]])#x扩大2倍,y扩大1.5倍
    18.  
      # T = Matrix([[1, 0], [0, -1]])#关于X轴对称
    19.  
      # T = Matrix([[-1, 0], [0, 1]])#关于X轴对称
    20.  
      # T = Matrix([[-1, 0], [0, -1]])#关于原点对称
    21.  
      # T = Matrix([[1, 0.5], [0, 1]])
    22.  
      # T = Matrix([[1, 0], [0.5, 1]])
    23.  
      theta = math.pi / 3
    24.  
      #旋转theta角度
    25.  
      T = Matrix([[math.cos(theta), math.sin(theta)], [-math.sin(theta), math.cos(theta)]])
    26.  
      P2 = T.dot(P.T())
    27.  
      plt.plot([P2.col_vector(i)[0] for i in range(P2.col_num())],[P2.col_vector(i)[1] for i in range(P2.col_num())])
    28.  
      plt.show()

    5.6实现单位矩阵和numpy中的逆矩阵

     

    Matrix.py

    1.  
      #单位矩阵
    2.  
      @classmethod
    3.  
      def identity(cls, n):
    4.  
      m = [[0]*n for _ in range(n)]
    5.  
      for i in range(n):
    6.  
      m[i][i] = 1
    7.  
      return cls(m)

    main_matrix.py

    1.  
      I = Matrix.identity(2)
    2.  
      print(I)
    3.  
      print("A.dot(I) = {}".format(matrix.dot(I)))
    4.  
      print("I.dot(A) = {}".format(I.dot(matrix)))

     main_numpy_matrix.py

    1.  
      #numpy中的逆矩阵
    2.  
      invA = np.linalg.inv(A)
    3.  
      print(invA)
    4.  
      print(A.dot(invA))
    5.  
      print(invA.dot(A))
    6.  
       
    7.  
      C = np.array([[1,2]])
    8.  
      print(np.linalg.inv(C))

    5.8用矩阵表示空间

     

    x轴就是(0,1)y轴就是(-1,0)

    6 线性系统

    6.4实现高斯-约旦消元法

    https://blog.csdn.net/weixin_40709094/article/details/105602775

    小石小石摩西摩西的学习笔记,欢迎提问,欢迎指正!!!
  • 相关阅读:
    title中的小图标
    JS
    浏览器的差距
    浏览器的前缀
    布局
    。。。 付解决浏览器兼容问题的两种方法
    form标签
    position讲解
    标题文档流与浮动
    css层叠问题
  • 原文地址:https://www.cnblogs.com/shijingwen/p/13857115.html
Copyright © 2011-2022 走看看