Let's call the roundness of the number the number of zeros to which it ends.
You have an array of n numbers. You need to choose a subset of exactly k numbers so that the roundness of the product of the selected numbers will be maximum possible.
The first line contains two integer numbers n and k (1 ≤ n ≤ 200, 1 ≤ k ≤ n).
The second line contains n space-separated integer numbers a1, a2, ..., an (1 ≤ ai ≤ 1018).
Print maximal roundness of product of the chosen subset of length k.
3 2
50 4 20
3
5 3
15 16 3 25 9
3
3 3
9 77 13
0
In the first example there are 3 subsets of 2 numbers. [50, 4] has product 200 with roundness 2, [4, 20] — product 80, roundness 1, [50, 20] — product 1000, roundness 3.
In the second example subset [15, 16, 25] has product 6000, roundness 3.
In the third example all subsets has product with roundness 0.
每输入一个数,就把分解为x个2,和y个5,则就转化为背包问题
#include <iostream> #include <algorithm> #include <cstring> #include <cstdio> #include <vector> #include <queue> #include <cstdlib> #include <iomanip> #include <cmath> #include <ctime> #include <map> #include <set> using namespace std; #define lowbit(x) (x&(-x)) #define max(x,y) (x>y?x:y) #define min(x,y) (x<y?x:y) #define MAX 100000000000000000 #define MOD 1000000007 #define pi acos(-1.0) #define ei exp(1) #define PI 3.141592653589793238462 #define ios() ios::sync_with_stdio(false) #define INF 0x3f3f3f3f #define mem(a) (memset(a,0,sizeof(a))) typedef long long ll; int n,k,a[205][2]; int dp[205][10050]; ll x; ll solve(ll x,ll y) { ll ans=0; while(x%y==0) { ans++; x/=y; } return ans; } int main() { while(scanf("%d%d",&n,&k)!=EOF) { memset(dp,-1,sizeof(dp)); dp[0][0]=0; int pos=0; for(int i=1;i<=n;i++) { scanf("%I64d",&x); a[i][0]=solve(x,2); a[i][1]=solve(x,5); pos+=a[i][1]; } for(int i=1;i<=n;i++) { for(int j=min(i,k);j>=1;j--) { for(int z=pos;z>=a[i][1];z--) { if(dp[j-1][z-a[i][1]]!=-1) dp[j][z]=max(dp[j][z],dp[j-1][z-a[i][1]]+a[i][0]); } } } int ans=0; for(int i=1;i<=pos;i++) { ans=max(ans,min(dp[k][i],i)); } printf("%d ",ans); } return 0; }