zoukankan      html  css  js  c++  java
  • pandas中的拼接

     

    大佬的链接:https://blog.csdn.net/weixin_45901519/article/details/108393658?utm_medium=distribute.pc_aggpage_search_result.none-task-blog-2~all~sobaiduend~default-2-108393658.nonecase&utm_term=pandas%20%E4%B8%A4%E8%A1%A8%E6%8B%BC%E6%8E%A5&spm=1000.2123.3001.4430

    1、concat()

    concat()函数一般是若干个数据结构相同的表格进行拼接。

    现在有三个DataFrame表:df1、df2、df3,列名columns相同,而索引index不同,直接合并就是下面这样的结果:

    >>> import pandas as pd
    >>> df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                            'B': ['B0', 'B1', 'B2', 'B3'],
                            'C': ['C0', 'C1', 'C2', 'C3'],
                            'D': ['D0', 'D1', 'D2', 'D3']},
                           index=[0, 1, 2, 3])
    >>> df1
        A   B   C   D
    0  A0  B0  C0  D0
    1  A1  B1  C1  D1
    2  A2  B2  C2  D2
    3  A3  B3  C3  D3
    >>> df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                            'B': ['B4', 'B5', 'B6', 'B7'],
                            'C': ['C4', 'C5', 'C6', 'C7'],
                            'D': ['D4', 'D5', 'D6', 'D7']},
                           index=[4, 5, 6, 7])
    >>> df2
        A   B   C   D
    4  A4  B4  C4  D4
    5  A5  B5  C5  D5
    6  A6  B6  C6  D6
    7  A7  B7  C7  D7
    >>> df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
                            'B': ['B8', 'B9', 'B10', 'B11'],
                            'C': ['C8', 'C9', 'C10', 'C11'],
                            'D': ['D8', 'D9', 'D10', 'D11']},
                           index=[8, 9, 10, 11])
    >>> df3
          A    B    C    D
    8    A8   B8   C8   D8
    9    A9   B9   C9   D9
    10  A10  B10  C10  D10
    11  A11  B11  C11  D11
    >>> frames = [df1, df2, df3]
    >>> result = pd.concat(frames)
    >>> result
          A    B    C    D
    0    A0   B0   C0   D0
    1    A1   B1   C1   D1
    2    A2   B2   C2   D2
    3    A3   B3   C3   D3
    4    A4   B4   C4   D4
    5    A5   B5   C5   D5
    6    A6   B6   C6   D6
    7    A7   B7   C7   D7
    8    A8   B8   C8   D8
    9    A9   B9   C9   D9
    10  A10  B10  C10  D10
    11  A11  B11  C11  D11

    2、append()

    对于concat()操作,一个有用的快捷方式是Series和DataFrame上的append()实例方法。沿axis=0进行拼接,即索引。

    result = df1.append(df2)

    结果:
    在这里插入图片描述

    3、merge()

    pandas提供的函数merge()主要作为两个表的横向拼接

    4、join()

    join()是一种方便的方法,主要用于索引上的合并。可以将两个可能具有不同索引的数据变量的列组合为单个结果数据变量。下面是一个非常基本的例子:

    In [79]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
       ....:                      'B': ['B0', 'B1', 'B2']},
       ....:                     index=['K0', 'K1', 'K2'])
       ....: 
    
    In [80]: right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
       ....:                       'D': ['D0', 'D2', 'D3']},
       ....:                      index=['K0', 'K2', 'K3'])
       ....: 
    
    In [81]: result = left.join(right)

    结果:
    在这里插入图片描述

    结果:

    在这里插入图片描述

    In [83]: result = left.join(right, how='inner')

    结果:

    在这里插入图片描述

  • 相关阅读:
    SQL语句大全
    软件设计方法
    统计在线的用户
    解放web程序员的输入验证
    OUTLOOK菜单类
    在asp.net 2.0中结合母板页meta,Tiele重置
    微软自带AJAX的用法
    在asp.net 2.0中发送邮件
    js编写的语法高亮引擎
    有关模版MasterPage的问题
  • 原文地址:https://www.cnblogs.com/shuangcao/p/13967864.html
Copyright © 2011-2022 走看看