zoukankan      html  css  js  c++  java
  • Tensorflow学习教程简单练一波,线性模型

    #coding:utf-8
    
    import tensorflow as tf
    import numpy as np
    
    #使用numpy 生成100个随机点
    
    x_data = np.random.rand(100)
    y_data = x_data*0.1 + 0.2
    
    #构造一个线性模型,k 和 b是我们要求的两个值,利用100个点
    #进行不断迭代 然后求出最佳的k和b
    b = tf.Variable(0.)
    k = tf.Variable(0.)
    y = k*x_data + b 
    
    #二次代价函数
    loss = tf.reduce_mean(tf.square(y_data-y))
    #定义一个训练的优化器:梯度下降法
    optimizer = tf.train.GradientDescentOptimizer(0.2) #学习率为0.2
    #最小化代价函数
    #使用前面定义好的优化器来减小loss值
    train = optimizer.minimize(loss) 
    init = tf.global_variables_initializer()
    with tf.Session() as sess:
        sess.run(init)
        for step in range(300):
            sess.run(train)
            if step%20 ==0:
                print(step,sess.run([k,b]))
    复制代码

    结果

    复制代码
    (0, [0.046660472, 0.097824201])
    (20, [0.097689927, 0.20109874])
    (40, [0.098617099, 0.20065789])
    (60, [0.0991721, 0.20039386])
    (80, [0.099504374, 0.20023578])
    (100, [0.09970329, 0.20014116])
    (120, [0.09982238, 0.20008451])
    (140, [0.099893652, 0.20005059])
    (160, [0.099936351, 0.20003028])
    (180, [0.099961899, 0.20001812])
    (200, [0.099977195, 0.20001085])
    (220, [0.099986345, 0.2000065])
    (240, [0.099991821, 0.20000389])
    (260, [0.099995099, 0.20000234])
    (280, [0.099997051, 0.2000014])
    复制代码

    可以看到求得的k和b非常接近于我们定义的k值和b值。

  • 相关阅读:
    如何下载网络图片资源
    经典排序之快速排序(含红黑树)
    经典排序之归并排序
    node微信公众号开发---自动回复
    koa2的文件上传
    async await的用法
    Generator yield语法和 co模块
    CentOS 7 下安装 Nginx
    windows下nginx的安装及使用方法入门
    linux下nodejs安装以及如何更新到最新的版本
  • 原文地址:https://www.cnblogs.com/shuimuqingyang/p/9960771.html
Copyright © 2011-2022 走看看