一个 深度优先搜索以及回溯递归的 经典运用,复杂度是 O(NM)
需要注意的是: 选择的 点俩俩要求 等级限制,以及一个点只能 应用一次, 即使有环 也不要紧。
#include <cstring> #include <cstdio> #define min(a, b) ((a) < (b) ? (a) : (b)) #define max(a, b) ((a) < (b) ? (b) : (a)) const int N = 105; struct Edge { int to,val,pre; Edge(){} Edge(int TO, int VAL, int PRE) : to(TO), val(VAL), pre(PRE){}; void show() { printf ("%d %d %d ", to, val, pre); } }; int head[N], pos, m, n; Edge edge[N * N]; int P[N], L[N]; bool flag[N]; void init(){ memset(head, -1, sizeof head); memset(flag, 0, sizeof flag); pos = 0; } void addEdge(int s, int to, int val) { edge[pos] = Edge(to, val, head[s]); head[s] = pos ++; } int dfs(int person, int left, int right) { if (L[person] + m < right || L[person] - m > left) return 0x7fffffff; flag[person] = true; int ans = P[person]; for(int i = head[person]; ~i ; i = edge[i].pre) { Edge &tmp = edge[i]; if (!flag[tmp.to]) { int wpd = dfs(tmp.to, min(left, L[tmp.to]), max(right, L[tmp.to])); if (wpd == 0x7fffffff) continue; wpd += tmp.val; ans = min(ans, wpd); } } flag[person] = false; return ans; } void solve() { printf("%d ", dfs(1, L[1], L[1])); } int main() { int X, T, V; while(~scanf("%d%d", &m, &n)) { init(); for(int i = 1 ; i <= n ; ++i) { scanf("%d%d%d", P + i , L + i, &X); for( int j = 1 ; j <= X ; ++j) { scanf("%d%d", &T, &V); addEdge(i, T, V); } } solve(); } return 0; }