zoukankan      html  css  js  c++  java
  • keras快速开始序贯(Sequential)模型

    快速开始序贯(Sequential)模型

    序贯模型是多个网络层的线性堆叠,也就是“一条路走到黑”。

    可以通过向Sequential模型传递一个layer的list来构造该模型:

    from keras.models import Sequential
    from keras.layers import Dense, Activation
    
    model = Sequential([
    Dense(32, units=784),
    Activation('relu'),
    Dense(10),
    Activation('softmax'),
    ])
    

    也可以通过.add()方法一个个的将layer加入模型中:

    model = Sequential()
    model.add(Dense(32, input_shape=(784,)))
    model.add(Activation('relu'))
    

    指定输入数据的shape

    模型需要知道输入数据的shape,因此,Sequential的第一层需要接受一个关于输入数据shape的参数,后面的各个层则可以自动的推导出中间数据的shape,因此不需要为每个层都指定这个参数。有几种方法来为第一层指定输入数据的shape

    • 传递一个input_shape的关键字参数给第一层,input_shape是一个tuple类型的数据,其中也可以填入None,如果填入None则表示此位置可能是任何正整数。数据的batch大小不应包含在其中。

    • 有些2D层,如Dense,支持通过指定其输入维度input_dim来隐含的指定输入数据shape,是一个Int类型的数据。一些3D的时域层支持通过参数input_diminput_length来指定输入shape。

    • 如果你需要为输入指定一个固定大小的batch_size(常用于stateful RNN网络),可以传递batch_size参数到一个层中,例如你想指定输入张量的batch大小是32,数据shape是(6,8),则你需要传递batch_size=32input_shape=(6,8)

    model = Sequential()
    model.add(Dense(32, input_dim=784))
    
    model = Sequential()
    model.add(Dense(32, input_shape=(784,)))
    

    编译

    在训练模型之前,我们需要通过compile来对学习过程进行配置。compile接收三个参数:

    • 优化器optimizer:该参数可指定为已预定义的优化器名,如rmspropadagrad,或一个Optimizer类的对象,详情见optimizers

    • 损失函数loss:该参数为模型试图最小化的目标函数,它可为预定义的损失函数名,如categorical_crossentropymse,也可以为一个损失函数。详情见losses

    • 指标列表metrics:对分类问题,我们一般将该列表设置为metrics=['accuracy']。指标可以是一个预定义指标的名字,也可以是一个用户定制的函数.指标函数应该返回单个张量,或一个完成metric_name - > metric_value映射的字典.请参考性能评估

    # For a multi-class classification problem
    model.compile(optimizer='rmsprop',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
    
    # For a binary classification problem
    model.compile(optimizer='rmsprop',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    
    # For a mean squared error regression problem
    model.compile(optimizer='rmsprop',
                  loss='mse')
    
    # For custom metrics
    import keras.backend as K
    
    def mean_pred(y_true, y_pred):
        return K.mean(y_pred)
    
    model.compile(optimizer='rmsprop',
                  loss='binary_crossentropy',
                  metrics=['accuracy', mean_pred])
    

    训练

    Keras以Numpy数组作为输入数据和标签的数据类型。训练模型一般使用fit函数,该函数的详情见这里。下面是一些例子。

    # For a single-input model with 2 classes (binary classification):
    
    model = Sequential()
    model.add(Dense(32, activation='relu', input_dim=100))
    model.add(Dense(1, activation='sigmoid'))
    model.compile(optimizer='rmsprop',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    
    # Generate dummy data
    import numpy as np
    data = np.random.random((1000, 100))
    labels = np.random.randint(2, size=(1000, 1))
    
    # Train the model, iterating on the data in batches of 32 samples
    model.fit(data, labels, epochs=10, batch_size=32)
    
    # For a single-input model with 10 classes (categorical classification):
    
    model = Sequential()
    model.add(Dense(32, activation='relu', input_dim=100))
    model.add(Dense(10, activation='softmax'))
    model.compile(optimizer='rmsprop',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
    
    # Generate dummy data
    import numpy as np
    data = np.random.random((1000, 100))
    labels = np.random.randint(10, size=(1000, 1))
    
    # Convert labels to categorical one-hot encoding
    one_hot_labels = keras.utils.to_categorical(labels, num_classes=10)
    
    # Train the model, iterating on the data in batches of 32 samples
    model.fit(data, one_hot_labels, epochs=10, batch_size=32)
    

    例子

    这里是一些帮助你开始的例子

    在Keras代码包的examples文件夹中,你将找到使用真实数据的示例模型:

    • CIFAR10 小图片分类:使用CNN和实时数据提升
    • IMDB 电影评论观点分类:使用LSTM处理成序列的词语
    • Reuters(路透社)新闻主题分类:使用多层感知器(MLP)
    • MNIST手写数字识别:使用多层感知器和CNN
    • 字符级文本生成:使用LSTM …

    基于多层感知器的softmax多分类:

    from keras.models import Sequential
    from keras.layers import Dense, Dropout, Activation
    from keras.optimizers import SGD
    
    # Generate dummy data
    import numpy as np
    x_train = np.random.random((1000, 20))
    y_train = keras.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10)
    x_test = np.random.random((100, 20))
    y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
    
    model = Sequential()
    # Dense(64) is a fully-connected layer with 64 hidden units.
    # in the first layer, you must specify the expected input data shape:
    # here, 20-dimensional vectors.
    model.add(Dense(64, activation='relu', input_dim=20))
    model.add(Dropout(0.5))
    model.add(Dense(64, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(10, activation='softmax'))
    
    sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    model.compile(loss='categorical_crossentropy',
                  optimizer=sgd,
                  metrics=['accuracy'])
    
    model.fit(x_train, y_train,
              epochs=20,
              batch_size=128)
    score = model.evaluate(x_test, y_test, batch_size=128)
    

    MLP的二分类:

    import numpy as np
    from keras.models import Sequential
    from keras.layers import Dense, Dropout
    
    # Generate dummy data
    x_train = np.random.random((1000, 20))
    y_train = np.random.randint(2, size=(1000, 1))
    x_test = np.random.random((100, 20))
    y_test = np.random.randint(2, size=(100, 1))
    
    model = Sequential()
    model.add(Dense(64, input_dim=20, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(64, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1, activation='sigmoid'))
    
    model.compile(loss='binary_crossentropy',
                  optimizer='rmsprop',
                  metrics=['accuracy'])
    model.fit(x_train, y_train,
              epochs=20,
              batch_size=128)
    score = model.evaluate(x_test, y_test, batch_size=128)
    

    类似VGG的卷积神经网络:

    import numpy as np
    import keras
    from keras.models import Sequential
    from keras.layers import Dense, Dropout, Flatten
    from keras.layers import Conv2D, MaxPooling2D
    from keras.optimizers import SGD
    
    # Generate dummy data
    x_train = np.random.random((100, 100, 100, 3))
    y_train = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
    x_test = np.random.random((20, 100, 100, 3))
    y_test = keras.utils.to_categorical(np.random.randint(10, size=(20, 1)), num_classes=10)
    
    model = Sequential()
    # input: 100x100 images with 3 channels -> (100, 100, 3) tensors.
    # this applies 32 convolution filters of size 3x3 each.
    model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(100, 100, 3)))
    model.add(Conv2D(32, (3, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    
    model.add(Flatten())
    model.add(Dense(256, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(10, activation='softmax'))
    
    sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    model.compile(loss='categorical_crossentropy', optimizer=sgd)
    
    model.fit(x_train, y_train, batch_size=32, epochs=10)
    score = model.evaluate(x_test, y_test, batch_size=32)
    

    使用LSTM的序列分类

    from keras.models import Sequential
    from keras.layers import Dense, Dropout
    from keras.layers import Embedding
    from keras.layers import LSTM
    
    model = Sequential()
    model.add(Embedding(max_features, output_dim=256))
    model.add(LSTM(128))
    model.add(Dropout(0.5))
    model.add(Dense(1, activation='sigmoid'))
    
    model.compile(loss='binary_crossentropy',
                  optimizer='rmsprop',
                  metrics=['accuracy'])
    
    model.fit(x_train, y_train, batch_size=16, epochs=10)
    score = model.evaluate(x_test, y_test, batch_size=16)
    

    使用1D卷积的序列分类

    from keras.models import Sequential
    from keras.layers import Dense, Dropout
    from keras.layers import Embedding
    from keras.layers import Conv1D, GlobalAveragePooling1D, MaxPooling1D
    
    model = Sequential()
    model.add(Conv1D(64, 3, activation='relu', input_shape=(seq_length, 100)))
    model.add(Conv1D(64, 3, activation='relu'))
    model.add(MaxPooling1D(3))
    model.add(Conv1D(128, 3, activation='relu'))
    model.add(Conv1D(128, 3, activation='relu'))
    model.add(GlobalAveragePooling1D())
    model.add(Dropout(0.5))
    model.add(Dense(1, activation='sigmoid'))
    
    model.compile(loss='binary_crossentropy',
                  optimizer='rmsprop',
                  metrics=['accuracy'])
    
    model.fit(x_train, y_train, batch_size=16, epochs=10)
    score = model.evaluate(x_test, y_test, batch_size=16)
    

    用于序列分类的栈式LSTM

    在该模型中,我们将三个LSTM堆叠在一起,是该模型能够学习更高层次的时域特征表示。

    开始的两层LSTM返回其全部输出序列,而第三层LSTM只返回其输出序列的最后一步结果,从而其时域维度降低(即将输入序列转换为单个向量)

    regular_stacked_lstm

    from keras.models import Sequential
    from keras.layers import LSTM, Dense
    import numpy as np
    
    data_dim = 16
    timesteps = 8
    num_classes = 10
    
    # expected input data shape: (batch_size, timesteps, data_dim)
    model = Sequential()
    model.add(LSTM(32, return_sequences=True,
                   input_shape=(timesteps, data_dim)))  # returns a sequence of vectors of dimension 32
    model.add(LSTM(32, return_sequences=True))  # returns a sequence of vectors of dimension 32
    model.add(LSTM(32))  # return a single vector of dimension 32
    model.add(Dense(10, activation='softmax'))
    
    model.compile(loss='categorical_crossentropy',
                  optimizer='rmsprop',
                  metrics=['accuracy'])
    
    # Generate dummy training data
    x_train = np.random.random((1000, timesteps, data_dim))
    y_train = np.random.random((1000, num_classes))
    
    # Generate dummy validation data
    x_val = np.random.random((100, timesteps, data_dim))
    y_val = np.random.random((100, num_classes))
    
    model.fit(x_train, y_train,
              batch_size=64, epochs=5,
              validation_data=(x_val, y_val))
    

    采用stateful LSTM的相同模型

    stateful LSTM的特点是,在处理过一个batch的训练数据后,其内部状态(记忆)会被作为下一个batch的训练数据的初始状态。状态LSTM使得我们可以在合理的计算复杂度内处理较长序列

    请FAQ中关于stateful LSTM的部分获取更多信息

    from keras.models import Sequential
    from keras.layers import LSTM, Dense
    import numpy as np
    
    data_dim = 16
    timesteps = 8
    num_classes = 10
    batch_size = 32
    
    # Expected input batch shape: (batch_size, timesteps, data_dim)
    # Note that we have to provide the full batch_input_shape since the network is stateful.
    # the sample of index i in batch k is the follow-up for the sample i in batch k-1.
    model = Sequential()
    model.add(LSTM(32, return_sequences=True, stateful=True,
                   batch_input_shape=(batch_size, timesteps, data_dim)))
    model.add(LSTM(32, return_sequences=True, stateful=True))
    model.add(LSTM(32, stateful=True))
    model.add(Dense(10, activation='softmax'))
    
    model.compile(loss='categorical_crossentropy',
                  optimizer='rmsprop',
                  metrics=['accuracy'])
    
    # Generate dummy training data
    x_train = np.random.random((batch_size * 10, timesteps, data_dim))
    y_train = np.random.random((batch_size * 10, num_classes))
    
    # Generate dummy validation data
    x_val = np.random.random((batch_size * 3, timesteps, data_dim))
    y_val = np.random.random((batch_size * 3, num_classes))
    
    model.fit(x_train, y_train,
              batch_size=batch_size, epochs=5, shuffle=False,
              validation_data=(x_val, y_val))
    

    转自 Keras 中文文档
    https://keras-cn.readthedocs.io/en/latest/getting_started/sequential_model/

  • 相关阅读:
    Linux----------自动化运维工具-ansible
    Linux----------自动化运维
    Linux----------集群介绍
    Linux----------集群-LVS
    Linux----------zabbix监控-进阶
    Linux----------zabbix监控基础
    Linux----------mysql主从复制和基于GTID主从复制
    Linux----------mysql主从及高可用
    MongoDB笔记(四)基本管理命令
    MongoDB笔记(三)启动命令mongod的参数
  • 原文地址:https://www.cnblogs.com/siucaan/p/9623190.html
Copyright © 2011-2022 走看看