zoukankan      html  css  js  c++  java
  • 流动相似性例子

       

    目录

    何为流体相似性

    举个例子

    小结


         在飞机设计的时候,我们喜欢把缩小版的模型放风洞中去吹,这时我们显然希望模型能最大限度地模拟真实尺寸飞机的情况,也就是模型的流体动力学模型要尽可能和真实飞机相似,流体相似性于是就登场了。

    何为流体相似性

        流体相似性需要满足以下两个条件:

        1、几何外观需相似

        2、相似系数需相同

        目前,我们只需把自由来流马赫数(Ma = frac{V_{infty }}{a_{infty }})以及自由来流雷诺数看作相似系数(Re = frac{
ho _{infty }V_{infty }c}{mu _{infty }} ps:c为长度)就行。(可能有人要问何为相似参数,请参看:相似参数)。通过控制这两个条件,我们就可以使模型飞机和真实飞机具有相似的升力系数C_{L}和阻力系数C_{R},这两个系数在空气动力学中的重要性不言而喻。

    举个例子

        接下来,我们通过一个例子来增进理解。分别将两个圆柱放入两个不同的流场中,其中在A流场有自由来流,其密度、速度和温度分别为
ho _{1 }V_{1}T_{1},而放入其中的圆柱的直径为d_{1},在B流场中也有自由来流,其密度、速度和温度分别为
ho _{2 } = 
ho _{2 }/4V_{2} =2V_{1}T_{2} = 4T_{1},而放入其中的圆柱直径为d_{2} = 4d_{1}。同时,我们假设这两个流场中它们的mua是正比于T^{frac{1}{2}},证明它们流动相似。

    首先,根据”流场中它们的mua是正比于T^{frac{1}{2}}“这一条件,我们可以推知:

    frac{mu _{2}}{mu _{1}} = sqrt{frac{T_{2}}{T_{1}}} = 2 ,frac{a _{2}}{a_{1}} = sqrt{frac{T_{2}}{T_{1}}} = 2.

    于是,我们可知M_{2} = frac{V_{2}}{a_{2}} = frac{2V_{1}}{2a_{1}} = frac{V_{1}}{a_{1}}=M_{1} , Re_{2} = frac{
ho _{2}V_{2}d_{2}}{mu_{2} } = frac{(
ho _{1}/4)(2V_{1})(4d_{1})}{2mu_{1} } = frac{
ho _{1}V_{1}d_{1}}{mu_{1} } = Re_{1}

    虽然A,B场中物体的大小不同,但它们却是流体相似的,也就是它们受到的升力系数和阻力系数是一样的,这为我们使用缩小的模型来模拟真实飞机提供了理论基础。

    小结

    流动动力学相似需满足以下条件:

    1、几何外观需相似

    2、相似系数需相同

    通过流体相似,我们就可以在风洞中用缩小版的模型来模拟真实飞机的受力情况。

  • 相关阅读:
    三个习题
    20 python--celery
    19 python --队列
    18 python --多线程
    17 python --多进程
    16 python --memcached
    15 python --redis
    14 python --mysql
    13 python --正则
    12 python --json
  • 原文地址:https://www.cnblogs.com/sj2050/p/13413700.html
Copyright © 2011-2022 走看看