zoukankan      html  css  js  c++  java
  • linux启动内核源码分析

    内核的启动时从main.c这个文件里面的start_kernel函数开始的,这个文件在linux源码里面的init文件夹下面

    下面我们来看看这个函数 这个函数很长,可以看个大概过去

    asmlinkage __visible void __init start_kernel(void)
    {
        char *command_line;
        char *after_dashes;
    
        set_task_stack_end_magic(&init_task);
        smp_setup_processor_id();
        debug_objects_early_init();
    
        cgroup_init_early();
    
        local_irq_disable();
        early_boot_irqs_disabled = true;
    
        /*
         * Interrupts are still disabled. Do necessary setups, then
         * enable them.
         */
        boot_cpu_init();
        page_address_init();
        pr_notice("%s", linux_banner);
        setup_arch(&command_line);
        /*
         * Set up the the initial canary and entropy after arch
         * and after adding latent and command line entropy.
         */
        add_latent_entropy();
        add_device_randomness(command_line, strlen(command_line));
        boot_init_stack_canary();
        mm_init_cpumask(&init_mm);
        setup_command_line(command_line);
        setup_nr_cpu_ids();
        setup_per_cpu_areas();
        smp_prepare_boot_cpu();    /* arch-specific boot-cpu hooks */
        boot_cpu_hotplug_init();
    
        build_all_zonelists(NULL);
        page_alloc_init();
    
        pr_notice("Kernel command line: %s
    ", boot_command_line);
        parse_early_param();
        after_dashes = parse_args("Booting kernel",
                      static_command_line, __start___param,
                      __stop___param - __start___param,
                      -1, -1, NULL, &unknown_bootoption);
        if (!IS_ERR_OR_NULL(after_dashes))
            parse_args("Setting init args", after_dashes, NULL, 0, -1, -1,
                   NULL, set_init_arg);
    
        jump_label_init();
    
        /*
         * These use large bootmem allocations and must precede
         * kmem_cache_init()
         */
        setup_log_buf(0);
        vfs_caches_init_early();
        sort_main_extable();
        trap_init();
        mm_init();
    
        ftrace_init();
    
        /* trace_printk can be enabled here */
        early_trace_init();
    
        /*
         * Set up the scheduler prior starting any interrupts (such as the
         * timer interrupt). Full topology setup happens at smp_init()
         * time - but meanwhile we still have a functioning scheduler.
         */
        sched_init();
        /*
         * Disable preemption - early bootup scheduling is extremely
         * fragile until we cpu_idle() for the first time.
         */
        preempt_disable();
        if (WARN(!irqs_disabled(),
             "Interrupts were enabled *very* early, fixing it
    "))
            local_irq_disable();
        radix_tree_init();
    
        /*
         * Set up housekeeping before setting up workqueues to allow the unbound
         * workqueue to take non-housekeeping into account.
         */
        housekeeping_init();
    
        /*
         * Allow workqueue creation and work item queueing/cancelling
         * early.  Work item execution depends on kthreads and starts after
         * workqueue_init().
         */
        workqueue_init_early();
    
        rcu_init();
    
        /* Trace events are available after this */
        trace_init();
    
        if (initcall_debug)
            initcall_debug_enable();
    
        context_tracking_init();
        /* init some links before init_ISA_irqs() */
        early_irq_init();
        init_IRQ();
        tick_init();
        rcu_init_nohz();
        init_timers();
        hrtimers_init();
        softirq_init();
        timekeeping_init();
        time_init();
        printk_safe_init();
        perf_event_init();
        profile_init();
        call_function_init();
        WARN(!irqs_disabled(), "Interrupts were enabled early
    ");
    
        early_boot_irqs_disabled = false;
        local_irq_enable();
    
        kmem_cache_init_late();
    
        /*
         * HACK ALERT! This is early. We're enabling the console before
         * we've done PCI setups etc, and console_init() must be aware of
         * this. But we do want output early, in case something goes wrong.
         */
        console_init();
        if (panic_later)
            panic("Too many boot %s vars at `%s'", panic_later,
                  panic_param);
    
        lockdep_init();
    
        /*
         * Need to run this when irqs are enabled, because it wants
         * to self-test [hard/soft]-irqs on/off lock inversion bugs
         * too:
         */
        locking_selftest();
    
        /*
         * This needs to be called before any devices perform DMA
         * operations that might use the SWIOTLB bounce buffers. It will
         * mark the bounce buffers as decrypted so that their usage will
         * not cause "plain-text" data to be decrypted when accessed.
         */
        mem_encrypt_init();
    
    #ifdef CONFIG_BLK_DEV_INITRD
        if (initrd_start && !initrd_below_start_ok &&
            page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) {
            pr_crit("initrd overwritten (0x%08lx < 0x%08lx) - disabling it.
    ",
                page_to_pfn(virt_to_page((void *)initrd_start)),
                min_low_pfn);
            initrd_start = 0;
        }
    #endif
        kmemleak_init();
        setup_per_cpu_pageset();
        numa_policy_init();
        acpi_early_init();
        if (late_time_init)
            late_time_init();
        sched_clock_init();
        calibrate_delay();
        pid_idr_init();
        anon_vma_init();
    #ifdef CONFIG_X86
        if (efi_enabled(EFI_RUNTIME_SERVICES))
            efi_enter_virtual_mode();
    #endif
        thread_stack_cache_init();
        cred_init();
        fork_init();
        proc_caches_init();
        uts_ns_init();
        buffer_init();
        key_init();
        security_init();
        dbg_late_init();
        vfs_caches_init();
        pagecache_init();
        signals_init();
        seq_file_init();
        proc_root_init();
        nsfs_init();
        cpuset_init();
        cgroup_init();
        taskstats_init_early();
        delayacct_init();
    
        check_bugs();
    
        acpi_subsystem_init();
        arch_post_acpi_subsys_init();
        sfi_init_late();
    
        /* Do the rest non-__init'ed, we're now alive */
        arch_call_rest_init();
    }

    这个函数里面我们会看到有很多的各种init,也就是初始化,我们只说几个重点操作

    首先来看下这个函数set_task_stack_end_magic(&init_task);

    在linux里面所有的进程都是由父进程创建而来,所以说在启动内核的时候需要有个祖先进程,这个进程是系统创建的

    第一个进程,我们称为0号进程,它是唯一一个没有通过fork或者kernel_thread的进程

    然后就是初始化系统调用,对应的函数就是trap_init();这里面设置了很多中断门,用于处理各种中断

    系统调用也是通过发送中断的方式进行的。

    接下来就是内存管理模块的初始化,对应的函数是mm_init();

    然后就是初始化任务调度,对应的函数就是sched_init();

    这个任务调度是干嘛用的呢?就是操作系统协调进程和cpu,比如说分配哪个进程在cpu上运行呀,

    在比如说你这个进程在cpu上运行时间过长了,然后操作系统就会把你踢下去,换另一个进程在cpu上运行。

    到了这个preempt_disable();函数,这个函数的意思就是在这个函数运行以后就禁止被中断

    也就是说在这个函数运行后面,如果没有主动让出cpu,那么其他进程是无法抢占他的。

    然后看下这个tick_init();这个函数是时钟初始化,这个时钟的概念是什么意思呢?

    计算机会每隔一段时间周期通知操作系统,就像时钟一样,滴答滴答,每滴答一下就是一个时间周期过去了,

    通知操作系统后,操作系统会看下当前在cpu上运行的进程运行时间是否过长,如果过长就标识该进程为可抢占

    然后在某些时机下会切掉该进程,换下一个进程。

    最后start_kernel()调用的是rest_init()用来初始化其他方面,这里面做了好多事情

    noinline void __ref rest_init(void)
    {
        struct task_struct *tsk;
        int pid;
    
        rcu_scheduler_starting();
        /*
         * We need to spawn init first so that it obtains pid 1, however
         * the init task will end up wanting to create kthreads, which, if
         * we schedule it before we create kthreadd, will OOPS.
         */
        pid = kernel_thread(kernel_init, NULL, CLONE_FS);
        /*
         * Pin init on the boot CPU. Task migration is not properly working
         * until sched_init_smp() has been run. It will set the allowed
         * CPUs for init to the non isolated CPUs.
         */
        rcu_read_lock();
        tsk = find_task_by_pid_ns(pid, &init_pid_ns);
        set_cpus_allowed_ptr(tsk, cpumask_of(smp_processor_id()));
        rcu_read_unlock();
    
        numa_default_policy();
        pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
        rcu_read_lock();
        kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
        rcu_read_unlock();
    
        /*
         * Enable might_sleep() and smp_processor_id() checks.
         * They cannot be enabled earlier because with CONFIG_PREEMPT=y
         * kernel_thread() would trigger might_sleep() splats. With
         * CONFIG_PREEMPT_VOLUNTARY=y the init task might have scheduled
         * already, but it's stuck on the kthreadd_done completion.
         */
        system_state = SYSTEM_SCHEDULING;
    
        complete(&kthreadd_done);
    
        /*
         * The boot idle thread must execute schedule()
         * at least once to get things moving:
         */
        schedule_preempt_disabled();
        /* Call into cpu_idle with preempt disabled */
        cpu_startup_entry(CPUHP_ONLINE);
    }

    首先调用kernel_thread()函数,用来创建用户态的第一个进程,这个进程是所有用户态进程的祖先进程,我们称为1号进程

    这个一号进程进入用户态以后,开枝散叶,创建了很多子进程,子进程又创建子进程,就形成了一颗进程树。

    一旦有了用户进程,就需要划分资源了,比如说用户态的进程要想使用网卡发送数据,这个时候不能直接让用户态进程调用网卡

    而是通过操作系统提供的系统调用函数,给进程发送数据,发送成功以后在返回到用户态进程,通知进程处理结果,也就是封装了

    底层实现,用户态进程想要实现什么功能,直接调用系统调用就可以了,在用户态进程进行系统调用时,操作系统会把当前该进程的

    参数都保存到寄存器里面,如果有对寄存器不懂的,就把寄存器想象成变量,变量是编程语言存放数据的,那么寄存器就是cpu用来存放数据的东西,

    等到系统调用从内核态返回到用户态的时候,会恢复当时保存的寄存器里面的数据,继续运行。

    这个过程就是这样的,用户态-》系统调用-》保存寄存器-》内核态执行系统调用-》恢复寄存器-》返回用户态 接着运行

     然后接着说这个一号进程启动过程,现在这个进程还是在内核态的,那么要怎么把它搞到用户态里面的,

    一般都是从用户态到内核态在返回到用户态,很少见过直接从内核态开始然后到用户态的

    看下下面这个代码

    void
    start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
    {
    set_user_gs(regs, 0);
    regs->fs    = 0;
    regs->ds    = __USER_DS;
    regs->es    = __USER_DS;
    regs->ss    = __USER_DS;
    regs->cs    = __USER_CS;
    regs->ip    = new_ip;
    regs->sp    = new_sp;
    regs->flags    = X86_EFLAGS_IF;
    force_iret();
    }
    EXPORT_SYMBOL_GPL(start_thread);

     创建进程的这函数最后会有这么一个函数也就是start_thread(),这里面把各个寄存器都设置为了_USER,啥意思呢,里面将用户态的代码段CS设置为_USER_CS,将用户态的数据段DS设置为_USER_DS,

    以及指令指针寄存器IP,栈顶指针SP,最后的force_iret();是用来恢复寄存器的,按理来说应该恢复在系统调用的时候保存的寄存器,这里面恢复的其实就是上面设置的寄存器。CS和指令指针寄存器IP恢复了,

    指向用户态下一个要执行的语句,DS和函数栈指针SP也被恢复了,指向用户态函数栈的栈顶,所以,下一条指令就从用户态开始了。

    用户态的祖先进程创建完了,那么内核态有没有一个祖先进程呢?

    有的,rest_init第二大事情就是第三个进程,也就是2号进程。

     了解更多:https://www.toutiao.com/c/user/83293539887/#mid=1633933053814798

  • 相关阅读:
    cestos7安装zookeeper
    Cestos7安装Elasticsearch5.4.3
    debian使用nginx创建静态文件存储
    tomcat优化
    tomcat停止和启动脚本
    linux中shell变量$#,$@,$0,$1,$2的含义解释
    redis设置bind
    Jenkins send build artifacts over ssh配置
    nginx 负载均衡5种配置方式
    Jenkins tomcat打包启动脚本,待完善
  • 原文地址:https://www.cnblogs.com/sjks/p/10893433.html
Copyright © 2011-2022 走看看