zoukankan      html  css  js  c++  java
  • python之concurrent.futures模块

    一、concurrent.futures模块简介

    concurrent.futures 模块提供了并发执行调用的高级接口

    并发可以使用threads执行,使用ThreadPoolExecutor 或 分离的processes,使用ProcessPoolExecutor。都实现了同一个接口,这个接口在抽象类Executor定义

    二、类的属性和方法

    concurrent.futures.wait(fstimeout=Nonereturn_when=ALL_COMPLETED):wait等待fs里面所有的Future实例(由不同的Executors实例创建的)完成。返回两个命名元祖,第一个元祖名为done,存放完成的futures对象,第二个元祖名为not_done,存放未完成的futures。return_when参数必须是concurrent.futures里面定义的常量:FIRST_COMPLETED,FIRST_EXCEPTION,ALL_COMPLETED

    concurrent.futures.as_completed(fstimeout=None):返回一个迭代器,yield那些完成的futures对象。fs里面有重复的也只可能返回一次。任何futures在调用as_completed()调用之前完成首先被yield。

    三、Future对象

     Future()封装了可调用对象的异步执行。Future实例可以被Executor.submit()方法创建。除了测试之外不应该直接创建。Future对象可以和异步执行的任务进行交互

    cancel():尝试去取消调用。如果调用当前正在执行,不能被取消。这个方法将返回False,否则调用将会被取消,方法将返回True
    
    cancelled():如果调用被成功取消返回True
    
    running():如果当前正在被执行不能被取消返回True
    
    done():如果调用被成功取消或者完成running返回True
    
    result(Timeout = None):拿到调用返回的结果。如果没有执行完毕就会去等待
    
    exception(timeout=None):捕获程序执行过程中的异常
    
    add_done_callback(fn):将fn绑定到future对象上。当future对象被取消或完成运行时,fn函数将会被调用
    
    以下的方法是在unitest中
    
    set_running_or_notify_cancel()
    
    set_result(result)
    
    set_exception(exception) 
    Future方法

    四、Executor对象

    1、抽象类,提供异步调用的方法。不能被直接使用,而是通过构建子类。

    2、方法

    提交任务方式一:submit(fn*args**kwargs):调度函数fn(*args **kwargs)返回一个Future对象代表调用的执行。

    提交任务方式二:map(func*iterablestimeout=Nonechunksize=1):和map(func, *iterables)相似。但是该map方法的执行是异步的。多个func的调用可以同时执行。当Executor对象是 ProcessPoolExecutor,才可以使用chunksize,将iterable对象切成块,将其作为分开的任务提交给pool,默认为1。对于很大的iterables,设置较大chunksize可以提高性能(切记)。

    shutdown(wait=True):给executor发信号,使其释放资源,当futures完成执行时。已经shutdown再调用submit()或map()会抛出RuntimeError。使用with语句,就可以避免必须调用本函数

    五、ThreadPoolExecutor对象

    ThreadPoolExecutor是Executor的子类使用线程池来异步执行调用

    如果使用不正确可能会造成死锁,所以submit的task尽量不要调用executor和futures,否则很容易出现死锁

    import time
    def wait_on_b():
        time.sleep(5)
        print(b.result())  # b will never complete because it is waiting on a.
        return 5
    
    def wait_on_a():
        time.sleep(5)
        print(a.result())  # a will never complete because it is waiting on b.
        return 6
    
    
    executor = ThreadPoolExecutor(max_workers=2)
    a = executor.submit(wait_on_b)
    b = executor.submit(wait_on_a)
    相互等待的死锁
    def wait_on_future():
        f = executor.submit(pow, 5, 2)
        # This will never complete because there is only one worker thread and
        # it is executing this function.
        print(f.result())
    
    executor = ThreadPoolExecutor(max_workers=1)
    executor.submit(wait_on_future)
    等待自己的结果的死锁

    默认的max_workers是设备的处理器数目*5

    六、ProcessPoolExecutor对象

     ProcessPoolExecutor同样是Executor的子类。使用进程池来异步执行调用。

    Executor.submit() called:
    - creates a uniquely numbered _WorkItem and adds it to the "Work Items" dict
    - adds the id of the _WorkItem to the "Work Ids" queue
    
    Local worker thread:
    - reads work ids from the "Work Ids" queue and looks up the corresponding
      WorkItem from the "Work Items" dict: if the work item has been cancelled then
      it is simply removed from the dict, otherwise it is repackaged as a
      _CallItem and put in the "Call Q". New _CallItems are put in the "Call Q"
      until "Call Q" is full. NOTE: the size of the "Call Q" is kept small because
      calls placed in the "Call Q" can no longer be cancelled with Future.cancel().
    - reads _ResultItems from "Result Q", updates the future stored in the
      "Work Items" dict and deletes the dict entry
    
    Process #1..n:
    - reads _CallItems from "Call Q", executes the calls, and puts the resulting
      _ResultItems in "Result Q"
    数据流程解释

    ProcessPoolExecutor使用multiprocessing模块,不受GIL锁的约束,意味着只有可以pickle的对象才可以执行和返回(pickle参考)

    __main__必须能够被工作子进程导入。所以意味着ProcessPoolExecutor在交互式解释器下不能工作。

    提交给ProcessPoolExecutor的可调用方法里面调用Executor或Future将会形成死锁。

    class concurrent.futures.ProcessPoolExecutor(max_workers=None)

    max_workers默认是处理器的个数

    import concurrent.futures
    import math
    
    PRIMES = [
        112272535095293,
        112582705942171,
        112272535095293,
        115280095190773,
        115797848077099,
        115797848077098,
        1099726899285419]
    
    
    def is_prime(n):
        """
        to judge the input number is prime or not
        :param n: input number
        :return: True or False
        """
        if n % 2 == 0:
            return False
    
        sqrt_n = int(math.(math.sqrt(n)))
        for i in range(3,sqrt_n + 1, 2):
            if n % i == 0:
                return False
            return True
    
    
    def main():
        """
        create Process Pool to judge the numbers is prime or not
        :return: None
        """
        with concurrent.futures.ProcessPoolExecutor() as executor:
            for number, prime in zip(PRIMES, executor.map(is_prime, PRIMES)):
                print(number,prime)
    
    if __name__ == '__main__':
        main()
    样例

    七、Exception类

    exception concurrent.futures.CancelledError

    exception concurrent.futures.TimeoutError

    exception concurrent.futures.process.BrokenProcessPool

  • 相关阅读:
    虚树
    最小树形图
    分块
    斜率优化
    单调队列优化DP
    树套树
    2-SAT
    莫队
    单调队列
    单调栈
  • 原文地址:https://www.cnblogs.com/skiler/p/7080179.html
Copyright © 2011-2022 走看看