zoukankan      html  css  js  c++  java
  • [BZOJ3309]DZY Loves Math

    题目大意:
      定义$f(n)$为$n$所含质因子的最大幂指数,共$q(qleq10000)$组询问,对于给定的$n,m(n,mleq10^7)$,求$sum_{i=1}^nsum_{j=1}^mf(gcd(i,j))$。
    思路:
    $$
    egin{align*}
    原式&=sum_{d=1}^{min(n,m)}f(d)sum_{i=1}^{lfloorfrac{n}{d} floor}sum_{j=1}^{lfloorfrac{m}{d} floor}[gcd(i,j)=1]\
    &=sum_{d=1}^{min(n,m)}f(d)sum_{i=1}^{lfloorfrac{n}{d} floor}sum_{j=1}^{lfloorfrac{m}{d} floor}sum_{p|gcd(i,j)}mu(p)\
    &=sum_{d=1}^{min(n,m)}f(d)sum_{p=1}^{min(lfloorfrac{n}{d} floor,lfloorfrac{m}{d} floor)}mu(p)sum_{i=1}^{lfloorfrac{n}{dp} floor}sum_{j=1}^{lfloorfrac{m}{dp} floor}1\
    &=sum_{d=1}^{min(n,m)}f(d)sum_{p=1}^{min(lfloorfrac{n}{d} floor,lfloorfrac{m}{d} floor)}mu(p)lfloorfrac{n}{dp} floorlfloorfrac{m}{dp} floor\
    &=sum_{d=1}^{min(n,m)}lfloorfrac{n}{d} floorlfloorfrac{m}{d} floorsum_{p|d}f(p)mu(frac{d}{p})
    end{align*}
    $$
      令$g(d)=sum_{p|d}f(p)mu(frac{d}{p})$,则
    $$
    原式=sum_{d=1}^{min(n,m)}lfloorfrac{n}{d} floorlfloorfrac{m}{d} floor g(d)
    $$
      考虑预处理$g(d)$。(具体过程略,参见https://www.cnblogs.com/RogerDTZ/p/8227485.html)

     1 #include<cstdio>
     2 #include<cctype>
     3 #include<algorithm>
     4 typedef long long int64;
     5 inline int getint() {
     6     register char ch;
     7     while(!isdigit(ch=getchar()));
     8     register int x=ch^'0';
     9     while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
    10     return x;
    11 }
    12 const int N=10000001,M=N;
    13 bool vis[N];
    14 int p[M],a[N],b[N];
    15 int64 g[N],sum[N];
    16 inline void sieve() {
    17     for(register int i=2;i<N;i++) {
    18         if(!vis[i]) {
    19             p[++p[0]]=i;
    20             a[i]=g[i]=1;
    21             b[i]=i;
    22         }
    23         for(register int j=1;j<=p[0]&&i*p[j]<N;j++) {
    24             vis[i*p[j]]=true;
    25             if(i%p[j]==0) {
    26                 a[i*p[j]]=a[i]+1;
    27                 b[i*p[j]]=b[i]*p[j];
    28                 if(i==b[i]) {
    29                     g[i*p[j]]=1;
    30                 } else {
    31                     g[i*p[j]]=(a[i*p[j]]==a[i/b[i]])?-g[i/b[i]]:0;
    32                 }
    33                 break;
    34             } else {
    35                 a[i*p[j]]=1;
    36                 b[i*p[j]]=p[j];
    37                 g[i*p[j]]=(a[i]==1)?-g[i]:0;
    38             }
    39         }
    40     }
    41     for(register int i=1;i<N;i++) {
    42         sum[i]=sum[i-1]+g[i];
    43     }
    44 }
    45 int main() {
    46     sieve();
    47     for(register int T=getint();T;T--) {
    48         const int n=getint(),m=getint(),lim=std::min(n,m);
    49         int64 ans=0;
    50         for(register int i=1,j;i<=lim;i=j+1) {
    51             j=std::min(n/(n/i),m/(m/i));
    52             ans+=(sum[j]-sum[i-1])*(n/i)*(m/i);
    53         }
    54         printf("%lld
    ",ans);
    55     }
    56     return 0;
    57 }
  • 相关阅读:
    最全QQ空间说说伪装代码
    Office文件找回技巧
    CentOS7安装CMake(arm版)华为云服务器
    centos7修改ssh端口
    CentOS7安装zookeeper(ARM)版——华为服务器
    CentOS7安装JDK1.8
    Centos7安装Docker
    Prometheus+mysqld_exporter
    Prometheus+blackbox_exporter
    Prometheus+node_exporter
  • 原文地址:https://www.cnblogs.com/skylee03/p/8467489.html
Copyright © 2011-2022 走看看