zoukankan      html  css  js  c++  java
  • leetcode——Container With Most Water

    Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

    Note: You may not slant the container

             一开始没看懂题目,后来查了网上答案,大概意思是:x轴上在1,2,...,n点上有许多垂直的线段,长度依次是a1, a2, ..., an。找出两条线段,使他们和x轴围成的面积最大。面积公式是 Min(ai, aj) X |j - i|

    思路1:

    注意到面积大即容积大,面积由最短高度来决定,要求返回的是最大面积。

    一开始想到的就是双重循环,遍历i,j, 但是时间复杂度是O(n²),会超时

    class Solution {
    public:
        int maxArea(vector<int> &height) {
            // 宽乘以最短木板长度就是最大面积
            // 宽是1,2,3....
            // 时间复杂度O(n²)
            int start(0), end(1); // 记录起始木板的横坐标,两个之差为宽
            int area(INT_MIN);
            for(start = 0; start != height.size(); start++){
                for(end = start+1; end != height.size(); end++){
                    area = max(area, min(height[start], height[end]) * (end - start));
                }
            }
            return area;
        }
    };

    image

    思路2:

    看了大神的答案.

    容积即面积,它受长和高的影响,当长度减小时候,高必须增长才有可能提升面积,所以我们从长度最长时开始递减,然后寻找更高的线来更新候补.

    class Solution {
    public:
        int maxArea(vector<int> &height) {
            // 容积由面积决定
            // 面积由短木板高度决定
            // 当宽度减少时,短木板的高度应该增加,才能保证面积的增加,因此要找到比短木板的高度高的木板
            // 返回最大面积
            int l(0), r(height.size()-1), area(INT_MIN);
            while(l < r){
                area = max(area, min(height[l], height[r]) * (r-l));
                if(height[l] <= height[r]) l++;
                else r--;
            }
            return area;
        }
    };
  • 相关阅读:
    vue-router总结2
    vue-router总结
    react中的路由模块化
    react路由嵌套
    Javascript设计模式之我见:迭代器模式
    Javascript设计模式之我见:观察者模式
    【C语言】格式符
    【编译原理】代码在编译器中的完整处理过程
    【数据库】增删改查操作
    测试
  • 原文地址:https://www.cnblogs.com/skysand/p/4298102.html
Copyright © 2011-2022 走看看