zoukankan      html  css  js  c++  java
  • Dijkstra算法(三)之 Java详解

    前面分别通过C和C++实现了迪杰斯特拉算法,本文介绍迪杰斯特拉算法的Java实现。

    目录
    1. 迪杰斯特拉算法介绍
    2. 迪杰斯特拉算法图解
    3. 迪杰斯特拉算法的代码说明
    4. 迪杰斯特拉算法的源码

    转载请注明出处:http://www.cnblogs.com/skywang12345/

    更多内容:数据结构与算法系列 目录

    迪杰斯特拉算法介绍

    迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。
    它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。


    基本思想

         通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。

         此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。

         初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是"起点s到该顶点的路径"。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 ... 重复该操作,直到遍历完所有顶点。


    操作步骤

    (1) 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。

    (2) 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。

    (3) 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。

    (4) 重复步骤(2)和(3),直到遍历完所有顶点。

    单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。

    迪杰斯特拉算法图解

    以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。

    初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!
    第1步:将顶点D加入到S中。
        此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。     注:C(3)表示C到起点D的距离是3。

    第2步:将顶点C加入到S中。
        上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。
        此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。

    第3步:将顶点E加入到S中。
        上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。
        此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。

    第4步:将顶点F加入到S中。
        此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。

    第5步:将顶点G加入到S中。
        此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。

    第6步:将顶点B加入到S中。
        此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。

    第7步:将顶点A加入到S中。
        此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。

    此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)

    迪杰斯特拉算法的代码说明

    以"邻接矩阵"为例对迪杰斯特拉算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。

    1. 基本定义

    public class MatrixUDG {
    
        private int mEdgNum;        // 边的数量
        private char[] mVexs;       // 顶点集合
        private int[][] mMatrix;    // 邻接矩阵
        private static final int INF = Integer.MAX_VALUE;   // 最大值
    
        ...
    }
    

    MatrixUDG是邻接矩阵对应的结构体。mVexs用于保存顶点,mEdgNum用于保存边数,mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。

    2. 迪杰斯特拉算法

    /*
     * Dijkstra最短路径。
     * 即,统计图中"顶点vs"到其它各个顶点的最短路径。
     *
     * 参数说明:
     *       vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
     *     prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
     *     dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
     */
    public void dijkstra(int vs, int[] prev, int[] dist) {
        // flag[i]=true表示"顶点vs"到"顶点i"的最短路径已成功获取
        boolean[] flag = new boolean[mVexs.length];
    
        // 初始化
        for (int i = 0; i < mVexs.length; i++) {
            flag[i] = false;          // 顶点i的最短路径还没获取到。
            prev[i] = 0;              // 顶点i的前驱顶点为0。
            dist[i] = mMatrix[vs][i];  // 顶点i的最短路径为"顶点vs"到"顶点i"的权。
        }
    
        // 对"顶点vs"自身进行初始化
        flag[vs] = true;
        dist[vs] = 0;
    
        // 遍历mVexs.length-1次;每次找出一个顶点的最短路径。
        int k=0;
        for (int i = 1; i < mVexs.length; i++) {
            // 寻找当前最小的路径;
            // 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
            int min = INF;
            for (int j = 0; j < mVexs.length; j++) {
                if (flag[j]==false && dist[j]<min) {
                    min = dist[j];
                    k = j;
                }
            }
            // 标记"顶点k"为已经获取到最短路径
            flag[k] = true;
    
            // 修正当前最短路径和前驱顶点
            // 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
            for (int j = 0; j < mVexs.length; j++) {
                int tmp = (mMatrix[k][j]==INF ? INF : (min + mMatrix[k][j]));
                if (flag[j]==false && (tmp<dist[j]) ) {
                    dist[j] = tmp;
                    prev[j] = k;
                }
            }
        }
    
        // 打印dijkstra最短路径的结果
        System.out.printf("dijkstra(%c): 
    ", mVexs[vs]);
        for (int i=0; i < mVexs.length; i++)
            System.out.printf("  shortest(%c, %c)=%d
    ", mVexs[vs], mVexs[i], dist[i]);
    }
    

    迪杰斯特拉算法的源码

    这里分别给出"邻接矩阵图"和"邻接表图"的迪杰斯特拉算法源码。

    1. 邻接矩阵源码(MatrixUDG.java)

    2. 邻接表源码(ListUDG.java)

  • 相关阅读:
    欧拉公式
    isap的一些想法
    错误合集
    Hello World
    PAT (Advanced Level) Practice 1068 Find More Coins
    PAT (Advanced Level) 1087 All Roads Lead to Rome
    PAT (Advanced Level) 1075 PAT Judge
    PAT (Advanced Level) 1067 Sort with Swap(0, i)
    PAT (Advanced Level) 1017 Queueing at Bank
    PAT (Advanced Level) 1025 PAT Ranking
  • 原文地址:https://www.cnblogs.com/skywang12345/p/3711516.html
Copyright © 2011-2022 走看看