zoukankan      html  css  js  c++  java
  • Hadoop不适合处理实时数据的原因剖析

    1.概述 

      Hadoop已被公认为大数据分析领域无可争辩的王者,它专注与批处理。这种模型对许多情形(比如:为网页建立索引)已经足够,但还存在其他一些使用模型,它们需要来自高度动态的来源的实时信息。为了解决这个问题,就得借助Twitter推出得Storm。Storm不处理静态数据,但它处理预计会连续的流数据。考虑到Twitter用户每天生成1.4亿条推文,那么就很容易看到此技术的巨大用途。

      但Storm不只是一个传统的大数据分析系统:它是复杂事件处理(CEP)系统的一个示例。CEP系统通常分类为计算和面向检测,其中每个系统都是通过用户定义的算法在Storm中实现。举例而言,CEP可用于识别事件洪流中有意义的事件,然后实时的处理这些事件。

    2.为什么Hadoop不适合实时计算

      这里说的不适合,是一个相对的概念。如果业务对时延要求较低,那么这个 问题就不存在了;但事实上企业中的有些业务要求是对时延有高要求的。下面我 就来说说: 

    2.1时延

      Storm 的网络直传与内存计算,其时延必然比 Hadoop 的 HDFS 传输低得多;当计算模型比较适合流式时,Storm 的流试处理,省去了批处理的收集数据的时 间;因为 Storm 是服务型的作业,也省去了作业调度的时延。所以从时延的角 度来看,Storm 要快于 Hadoop,因而 Storm 更适合做实时流水数据处理。下面用一个业务场景来描述这个时延问题。

    2.1.1业务场景 

       几千个日志生产方产生日志文件,需要对这些日志文件进行一些 ETL 操作存 入数据库。

      我分别用 Hadoop 和 Storm 来分析下这个业务场景。假设我们用 Hadoop 来 处理这个业务流程,则需要先存入 HDFS,按每一分钟(达不到秒级别,分钟是最小纬度)切一个文件的粒度来计算。这个粒度已经极端的细了,再小的话 HDFS 上会一堆小文件。接着 Hadoop 开始计算时,一分钟已经过去了,然后再开始 调度任务又花了一分钟,然后作业运行起来,假设集群比较大,几秒钟就计算完 成了,然后写数据库假设也花了很少时间(理想状况下);这样,从数据产生到 最后可以使用已经过去了至少两分多钟。

      而我们来看看流式计算则是数据产生时,则有一个程序一直监控日志的产生, 产生一行就通过一个传输系统发给流式计算系统,然后流式计算系统直接处理, 处理完之后直接写入数据库,每条数据从产生到写入数据库,在资源充足(集群 较大)时可以在毫秒级别完成。 

    2.1.2吞吐

      在吞吐量方面,Hadoop 却是比 Storm 有优势;由于 Hadoop 是一个批处理计算,相比 Storm 的流式处理计算,Hadoop 的吞吐量高于 Storm。 

    2.2应用领域

      Hadoop 是基于 MapReduce 模型的,处理海量数据的离线分析工具,而 Storm是分布式的,实时数据流分析工具,数据是源源不断产生的,比如:Twitter 的 Timeline。另外,M/R 模型在实时领域很难有所发挥,它自身的设计特点决定了 数据源必须是静态的。 

    2.3硬件

      Hadoop 是磁盘级计算,进行计算时,数据在磁盘上,需要读写磁盘;Storm是内存级计算,数据直接通过网络导入内存。读写内存比读写磁盘速度快 N 个 数量级。根据行业结论,磁盘访问延迟约为内存访问延迟的 7.5w 倍,所以从这 个方面也可以看出,Storm 从速度上更快。 

    3.详细分析 

      在分析之前,我们先看看两种计算框架的模型,首先我们看下MapReduce的模型,以WordCount为例,如下图所示:

      阅读过Hadoop源码下的hadoop-mapreduce-project工程中的代码应该对这个流程会熟悉,我这里就不赘述这个流程了。

      接着我们在来看下Storm的模型,如下图所示:

      然后下面我们就会涉及到2个指标问题:延时和吞吐。

    • 延时:指数据从产生到运算产生结果的时间。与“速度”息息相关。
    • 吞吐:指系统单位时间处理的数据量。

      另外,在资源相同的情况下;一般 Storm 的延时要低于 MapReduce,但是

      吞吐吞吐也要低于 MapReduce,下面我描述下流计算和批处理计算的流程。 整个数据处理流程来说大致可以分为三个阶段:

      1. 数据采集阶段
      2. 数据计算(涉及计算中的中间存储)

      3. 数据结果展现(反馈) 

    3.1.1数据采集阶段

      目前典型的处理策略:数据的产生系统一般出自 Web 日志和解析 DB 的 Log,流计算数据采集是获取的消息队列(如:Kafka,RabbitMQ)等。批处理系统一 般将数据采集到分布式文件系统(如:HDFS),当然也有使用消息队列的。我们 暂且把消息队列和文件系统称为预处理存储。二者在这个阶段的延时和吞吐上没 太大的区别,接下来从这个预处理存储到数据计算阶段有很大的区别。流计算一 般在实时的读取消息队列进入流计算系统(Storm)的数据进行运算,批处理系 统一般回累计大批数据后,批量导入到计算系统(Hadoop),这里就有了延时的 区别。

    3.1.2数据计算阶段 

      流计算系统(Storm)的延时主要有以下几个方面:

    • Storm 进程是常驻的,有数据就可以进行实时的处理。MapReduce 数据累 计一批后由作业管理系统启动任务,Jobtracker 计算任务分配,Tasktacker 启动相关的运算进程。

    • Storm 每个计算单元之间数据通过网络(ZeroMQ)直接传输。MapReduce Map 任务运算的结果要写入到 HDFS,在 Reduce 任务通过网络拖过去运算。 相对来说多了磁盘读写,比较慢。

    • 对于复杂运算,Storm的运算模型直接支持DAG(有向无环图,多个应用程 序存在依赖关系,后一个应用程序的 输入为前一个的输出),MapReduce 需 要多个 MR 过程组成,而且有些 Map 操作没有意义。 

    3.1.3数据展现 

      流计算一般运算结果直接反馈到最终结果集中(展示页面,数据库,搜索引擎的索引)。而 MapReduce 一般需要整个运算结束后将结果批量导入到结果集中。 

    4.总结

      Storm 可以方便的在一个计算机集群中编写与扩展复杂的实时计算,Storm 之于实时,就好比 Hadoop 之于批处理。Storm 保证每个消息都会得到处理,而 且速度很快,在一个小集群中,每秒可以处理数以百万计的消息。

    Storm 的主要特点如下:

    • 简单的编程模型。类似于MR降低了并行批处理的复杂行,Storm降低了实时处理的复杂行。

    • 可以使用各种编程语言。只要遵守实现Storm的通信协议即可。

    • 容错性。Storm会管理工作进程和节点故障。

    • 水平扩展。计算是在多个线程,进程和服务器之间并行进行的。

    • 可靠的消息处理。Storm保证每个消息至少能得到处理一次完整的处理,使用 MQ 作为其底层消息队列。

    • 本地模式。Storm 有一个“本地模式”,可以在处理过程中完全模拟Storm集群。这让你可以快速进行开发和单元测试。

      最后总结出:Hadoop 的 MR 基于 HDFS,需要切分输入数据,产生中间数据文件,排序,数据压缩,多分复制等,效率地下。而 Storm 基于 ZeroMQ 这个高 性能的消息通讯库,不能持久化数据。这篇文章就分享到这里,若有疑问,可以加入QQ群或发送邮件给我,我会尽我所能给予帮助,与君共勉! 

  • 相关阅读:
    DataTable用中使用Compute 实现简单的DataTable数据的统计
    绑定生成一个有树结构的下拉菜单
    Docker--UI管理-----------Portainer安装部署使用
    调整系统的inode数量
    配置Linux服务器从第三方 SMTP 服务器外发邮件
    Jenkins的用户角色权限管理
    shell脚本----MongoDB4.0.21一键安装
    Shell----监控CPU/内存/负载高时的进程
    MySQL配置参数优化
    shell脚本实现---Zabbix5.0快速部署
  • 原文地址:https://www.cnblogs.com/smartloli/p/4290416.html
Copyright © 2011-2022 走看看