tetrahedron
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 889 Accepted Submission(s): 382
Problem Description
Given four points ABCD, if ABCD is a tetrahedron, calculate the inscribed sphere of ABCD.
Input
Multiple test cases (test cases ≤100).
Each test cases contains a line of 12 integers [−1e6,1e6] indicate the coordinates of four vertices of ABCD.
Input ends by EOF.
Each test cases contains a line of 12 integers [−1e6,1e6] indicate the coordinates of four vertices of ABCD.
Input ends by EOF.
Output
Print the coordinate of the center of the sphere and the radius, rounded to 4 decimal places.
If there is no such sphere, output "O O O O".
If there is no such sphere, output "O O O O".
Sample Input
0 0 0 2 0 0 0 0 2 0 2 0
0 0 0 2 0 0 3 0 0 4 0 0
Sample Output
0.4226 0.4226 0.4226 0.4226
O O O O
Author
HIT
Source
题意:给你四个点的坐标,判断是否有内切圆,如果有内切圆的话,输出内切圆圆心的坐标和半径;
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <map>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define MM(a,b) memset(a,b,sizeof(a));
#define inf 0x7f7f7f7f
#define FOR(i,n) for(int i=1;i<=n;i++)
#define CT continue;
#define PF printf
#define SC scanf
const int mod=1000000007;
const int N=1e6+100;
int n,m,c[N],pre[N],sum[N],a[N],ans[N];
struct Point{
ll x,y,z;
void read()
{
scanf("%lld%lld%lld",&x,&y,&z);
}
}p[6];
Point operator-(Point a,Point b)
{
return (Point){b.x-a.x,b.y-a.y,b.z-a.z};
}
double dis(Point a)
{
return sqrt(a.x*a.x+a.y*a.y+a.z*a.z);
}
Point cross(Point a,Point b)
{
return (Point){a.y*b.z-b.y*a.z,a.z*b.x-a.x*b.z,a.x*b.y-a.y*b.x};
}
double dot(Point a,Point b)
{
return a.x*b.x+a.y*b.y+a.z*b.z;
}
double pointtoface(Point c,Point a,Point b,Point d)
{
Point m=cross(b-a,d-a);
return dot(m,c-a)/dis(m);
}//三维几何中点到面的距离利用 向量a*向量b=|a|*|b|cos(ang)
int main()
{
double s[5];
while(~scanf("%lld%lld%lld",&p[1].x,&p[1].y,&p[1].z))
{
p[2].read();p[3].read();p[4].read();
if(dot(cross(p[2]-p[1],p[3]-p[1]),p[4])==0) {printf("O O O O
");CT;}
double ts=0;
s[1]=dis(cross(p[3]-p[2],p[4]-p[2]))/2;
s[2]=dis(cross(p[3]-p[1],p[4]-p[1]))/2;
s[3]=dis(cross(p[2]-p[1],p[4]-p[1]))/2;
s[4]=dis(cross(p[3]-p[1],p[2]-p[1]))/2;
for(int i=1;i<=4;i++) ts+=s[i];
double h=pointtoface(p[3],p[1],p[2],p[4]);
double r=fabs(s[3]/ts*h);
double x=(s[1]*p[1].x+s[2]*p[2].x+s[3]*p[3].x+s[4]*p[4].x)/ts;
double y=(s[1]*p[1].y+s[2]*p[2].y+s[3]*p[3].y+s[4]*p[4].y)/ts;
double z=(s[1]*p[1].z+s[2]*p[2].z+s[3]*p[3].z+s[4]*p[4].z)/ts;
printf("%.4f %.4f %.4f %.4f
",x,y,z,r);
}
return 0;
}
内切球坐标公式:http://www.docin.com/p-504197705.html?qq-pf-to=pcqq.c2c
这道题目了解下内切球球心公式就好,其他没有什么难的