深度学习模型常常使⽤丢弃法(dropout)来应对过拟合问题。丢弃法有⼀些不同的变体。本节中提到的丢弃法特指倒置丢弃法(inverted dropout)。
1. dropout
函数将以 drop_prob
的概率丢弃 X
中的元素。
%matplotlib inline
import torch
import torch.nn as nn
import numpy as np
import sys
sys.path.append("..")
import d2lzh_pytorch as d2l
def dropout(X, drop_prob):
X = X.float()
assert 0 <= drop_prob <= 1
keep_prob = 1 - drop_prob
# 这种情况下把全部元素都丢弃
if keep_prob == 0:
return torch.zeros_like(X)
mask = (torch.randn(X.shape) < keep_prob).float()
return mask * X / keep_prob
2. 运⾏例⼦来测试⼀下 dropout 函数。其中丢弃概率分别为0、0.5和1。
X = torch.arange(16).view(2, 8)
dropout(X, 0)
丢弃率为0.5
dropout(X, 0.5)
丢弃率为1.0
dropout(X, 1.0)
运行结果:
3. 定义模型参数
# 定义模型参数
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
W1 = torch.tensor(np.random.normal(0, 0.01, size=(num_inputs,
num_hiddens1)), dtype=torch.float, requires_grad=True)
b1 = torch.zeros(num_hiddens1, requires_grad=True)
W2 = torch.tensor(np.random.normal(0, 0.01, size=(num_hiddens1,
num_hiddens2)), dtype=torch.float, requires_grad=True)
b2 = torch.zeros(num_hiddens2, requires_grad=True)
W3 = torch.tensor(np.random.normal(0, 0.01, size=(num_hiddens2,
num_outputs)), dtype=torch.float, requires_grad=True)
b3 = torch.zeros(num_outputs, requires_grad=True)
params = [W1, b1, W2, b2, W3, b3]
4. 定义模型
# 定义模型
drop_prob1, drop_prob2 = 0.2, 0.5
def net(X, is_training=True):
X = X.view(-1, num_inputs)
H1 = (torch.matmul(X, W1) + b1).relu()
if is_training: # 只在训练模型时使⽤丢弃法
H1 = dropout(H1, drop_prob1) # 在第⼀层全连接后添加丢弃层
H2 = (torch.matmul(H1, W2) + b2).relu()
if is_training:
H2 = dropout(H2, drop_prob2) # 在第⼆层全连接后添加丢弃层
return torch.matmul(H2, W3) + b3
在对模型评估的时候不应该进⾏丢弃,所以我们修改⼀下 d2lzh_pytorch 中 的evaluate_accuracy 函数如下:
def evaluate_accuracy(data_iter, net):
acc_sum, n = 0.0, 0
for X, y in data_iter:
if isinstance(net, torch.nn.Module):
net.eval() # 评估模式, 这会关闭dropout
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
net.train() # 改回训练模式
else: # ⾃定义的模型
if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数
需要restart kernel才有效。
5. 训练和测试模型:
num_epochs, lr, batch_size = 5, 100.0, 256
loss = torch.nn.CrossEntropyLoss()
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs,
batch_size, params, lr)
测试结果: