zoukankan      html  css  js  c++  java
  • 梯度计算及训练

    x_data = [1.0, 2.0, 3.0]
    y_data = [2.0, 4.0, 6.0]

    w = 1.0 # a random guess: random value

    # our model forward pass
    def forward(x):
    return x * w


    # Loss function
    def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) * (y_pred - y)


    # compute gradient
    def gradient(x, y): # d_loss/d_w
    return 2 * x * (x * w - y)

    # Before training
    print("predict (before training)", 4, forward(4))

    # Training loop
    for epoch in range(100):
    for x_val, y_val in zip(x_data, y_data):
    grad = gradient(x_val, y_val)
    w = w - 0.01 * grad
    print(" grad: ", x_val, y_val, grad)
    l = loss(x_val, y_val)

    print("progress:", epoch, "w=", w, "loss=", l)

    # After training
    print("predict (after training)", "4 hours", forward(4))

    =========================================

    计算过程

    predict (before training) 4 4.0
    grad: 1.0 2.0 -2.0
    grad: 2.0 4.0 -7.84
    grad: 3.0 6.0 -16.2288
    progress: 0 w= 1.260688 loss= 4.919240100095999
    grad: 1.0 2.0 -1.478624
    grad: 2.0 4.0 -5.796206079999999
    grad: 3.0 6.0 -11.998146585599997
    progress: 1 w= 1.453417766656 loss= 2.688769240265834
    grad: 1.0 2.0 -1.093164466688
    grad: 2.0 4.0 -4.285204709416961
    grad: 3.0 6.0 -8.87037374849311
    progress: 2 w= 1.5959051959019805 loss= 1.4696334962911515
    grad: 1.0 2.0 -0.8081896081960389
    grad: 2.0 4.0 -3.1681032641284723
    grad: 3.0 6.0 -6.557973756745939
    progress: 3 w= 1.701247862192685 loss= 0.8032755585999681
    grad: 1.0 2.0 -0.59750427561463
    grad: 2.0 4.0 -2.3422167604093502
    grad: 3.0 6.0 -4.848388694047353
    progress: 4 w= 1.7791289594933983 loss= 0.43905614881022015
    grad: 1.0 2.0 -0.44174208101320334
    grad: 2.0 4.0 -1.7316289575717576
    grad: 3.0 6.0 -3.584471942173538
    progress: 5 w= 1.836707389300983 loss= 0.2399802903801062
    grad: 1.0 2.0 -0.3265852213980338
    grad: 2.0 4.0 -1.2802140678802925
    grad: 3.0 6.0 -2.650043120512205
    progress: 6 w= 1.8792758133988885 loss= 0.1311689630744999
    grad: 1.0 2.0 -0.241448373202223
    grad: 2.0 4.0 -0.946477622952715
    grad: 3.0 6.0 -1.9592086795121197
    progress: 7 w= 1.910747160155559 loss= 0.07169462478267678
    grad: 1.0 2.0 -0.17850567968888198
    grad: 2.0 4.0 -0.6997422643804168
    grad: 3.0 6.0 -1.4484664872674653
    progress: 8 w= 1.9340143044689266 loss= 0.03918700813247573
    grad: 1.0 2.0 -0.13197139106214673
    grad: 2.0 4.0 -0.5173278529636143
    grad: 3.0 6.0 -1.0708686556346834
    progress: 9 w= 1.9512159834655312 loss= 0.021418922423117836
    grad: 1.0 2.0 -0.09756803306893769
    grad: 2.0 4.0 -0.38246668963023644
    grad: 3.0 6.0 -0.7917060475345892
    progress: 10 w= 1.9639333911678687 loss= 0.01170720245384975
    grad: 1.0 2.0 -0.07213321766426262
    grad: 2.0 4.0 -0.2827622132439096
    grad: 3.0 6.0 -0.5853177814148953

    ......

    progress: 90 w= 1.9999999999988431 loss= 1.2047849775995315e-23
    grad: 1.0 2.0 -2.3137047833188262e-12
    grad: 2.0 4.0 -9.070078021977679e-12
    grad: 3.0 6.0 -1.8779644506139448e-11
    progress: 91 w= 1.9999999999991447 loss= 6.5840863393251405e-24
    grad: 1.0 2.0 -1.7106316363424412e-12
    grad: 2.0 4.0 -6.7057470687359455e-12
    grad: 3.0 6.0 -1.3882228699912957e-11
    progress: 92 w= 1.9999999999993676 loss= 3.5991747246272455e-24
    grad: 1.0 2.0 -1.2647660696529783e-12
    grad: 2.0 4.0 -4.957811938766099e-12
    grad: 3.0 6.0 -1.0263789818054647e-11
    progress: 93 w= 1.9999999999995324 loss= 1.969312363793734e-24
    grad: 1.0 2.0 -9.352518759442319e-13
    grad: 2.0 4.0 -3.666400516522117e-12
    grad: 3.0 6.0 -7.58859641791787e-12
    progress: 94 w= 1.9999999999996543 loss= 1.0761829795642296e-24
    grad: 1.0 2.0 -6.914468997365475e-13
    grad: 2.0 4.0 -2.7107205369247822e-12
    grad: 3.0 6.0 -5.611511255665391e-12
    progress: 95 w= 1.9999999999997444 loss= 5.875191475205477e-25
    grad: 1.0 2.0 -5.111466805374221e-13
    grad: 2.0 4.0 -2.0037305148434825e-12
    grad: 3.0 6.0 -4.1460168631601846e-12
    progress: 96 w= 1.999999999999811 loss= 3.2110109830478153e-25
    grad: 1.0 2.0 -3.779199175824033e-13
    grad: 2.0 4.0 -1.4814816040598089e-12
    grad: 3.0 6.0 -3.064215547965432e-12
    progress: 97 w= 1.9999999999998603 loss= 1.757455879087579e-25
    grad: 1.0 2.0 -2.793321129956894e-13
    grad: 2.0 4.0 -1.0942358130705543e-12
    grad: 3.0 6.0 -2.2648549702353193e-12
    progress: 98 w= 1.9999999999998967 loss= 9.608404711682446e-26
    grad: 1.0 2.0 -2.0650148258027912e-13
    grad: 2.0 4.0 -8.100187187665142e-13
    grad: 3.0 6.0 -1.6786572132332367e-12
    progress: 99 w= 1.9999999999999236 loss= 5.250973729513143e-26
    predict (after training) 4 hours 7.9999999999996945



    =================================

    自动计算梯度

    import torch
    from torch import nn
    from torch.autograd import Variable


    x_data = [1.0, 2.0, 3.0]
    y_data = [2.0, 4.0, 6.0]

    w = Variable(torch.Tensor([1.0]), requires_grad=True) # Any random value

    # our model forward pass


    def forward(x):
    return x * w

    # Loss function


    def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) * (y_pred - y)

    # Before training
    print("predict (before training)", 4, forward(4).data[0])

    # Training loop
    for epoch in range(10):
    for x_val, y_val in zip(x_data, y_data):
    l = loss(x_val, y_val)
    l.backward()
    print(" grad: ", x_val, y_val, w.grad.data[0])
    w.data = w.data - 0.01 * w.grad.data

    # Manually zero the gradients after updating weights
    w.grad.data.zero_()

    print("progress:", epoch, l.data[0])

    # After training
    print("predict (after training)", 4, forward(4).data[0])
    ---------------------------------

    predict (before training) 4 tensor(4.)
    grad: 1.0 2.0 tensor(-2.)
    grad: 2.0 4.0 tensor(-7.8400)
    grad: 3.0 6.0 tensor(-16.2288)
    progress: 0 tensor(7.3159)
    grad: 1.0 2.0 tensor(-1.4786)
    grad: 2.0 4.0 tensor(-5.7962)
    grad: 3.0 6.0 tensor(-11.9981)
    progress: 1 tensor(3.9988)
    grad: 1.0 2.0 tensor(-1.0932)
    grad: 2.0 4.0 tensor(-4.2852)
    grad: 3.0 6.0 tensor(-8.8704)
    progress: 2 tensor(2.1857)
    grad: 1.0 2.0 tensor(-0.8082)
    grad: 2.0 4.0 tensor(-3.1681)
    grad: 3.0 6.0 tensor(-6.5580)
    progress: 3 tensor(1.1946)
    grad: 1.0 2.0 tensor(-0.5975)
    grad: 2.0 4.0 tensor(-2.3422)
    grad: 3.0 6.0 tensor(-4.8484)
    progress: 4 tensor(0.6530)
    grad: 1.0 2.0 tensor(-0.4417)
    grad: 2.0 4.0 tensor(-1.7316)
    grad: 3.0 6.0 tensor(-3.5845)
    progress: 5 tensor(0.3569)
    grad: 1.0 2.0 tensor(-0.3266)
    grad: 2.0 4.0 tensor(-1.2802)
    grad: 3.0 6.0 tensor(-2.6500)
    progress: 6 tensor(0.1951)
    grad: 1.0 2.0 tensor(-0.2414)
    grad: 2.0 4.0 tensor(-0.9465)
    grad: 3.0 6.0 tensor(-1.9592)
    progress: 7 tensor(0.1066)
    grad: 1.0 2.0 tensor(-0.1785)
    grad: 2.0 4.0 tensor(-0.6997)
    grad: 3.0 6.0 tensor(-1.4485)
    progress: 8 tensor(0.0583)
    grad: 1.0 2.0 tensor(-0.1320)
    grad: 2.0 4.0 tensor(-0.5173)
    grad: 3.0 6.0 tensor(-1.0709)
    progress: 9 tensor(0.0319)
    predict (after training) 4 tensor(7.8049)

  • 相关阅读:
    马走日
    扩号匹配问题
    八皇后
    流感传染
    迷宫
    棋盘问题
    JAVA-初步认识-第二章-字符类型的运算续
    JAVA-初步认识-第二章-算术运算符1知识点整理
    JAVA-初步认识-第二章-算术运算符1
    JAVA-初步认识-第二章-类型运算细节
  • 原文地址:https://www.cnblogs.com/songyuejie/p/11998927.html
Copyright © 2011-2022 走看看