zoukankan      html  css  js  c++  java
  • 各种插值法及效果图对比

    Inverse Distance to a Power is fast but has the tendency to generate " bull's-eye" patterns of concentric contours around the data points. Inverse Distance to a Power does not extrapolate Z values beyond the range of data.

    srfInverseDistance

    Kriging is one of the more flexible methods and is useful for gridding almost any type of data set. With most data sets, Kriging with the default linear variogram is quite effective. In general, we would most often recommend this method. Kriging is the default gridding method because it generates a good map for most data sets. For larger data sets, Kriging can be rather slow. Kriging can extrapolate grid values beyond your data's Z range.

    srfKriging

    Minimum Curvature generates smooth surfaces and is fast for most data sets but it can create high magnitude artifacts in areas of no data. The internal tension and boundary tension allow you control over the amount of smoothing. Minimum Curvature can extrapolate values beyond your data's Z range.

    srfMinCurvature

    Natural Neighbor generates good contours from data sets containing dense data in some areas and sparse data in other areas. It does not generate data in areas without data. Natural Neighbor does not extrapolate Z grid values beyond the range of data.

    srfNaturalNeighbor

    Nearest Neighbor is useful for converting regularly spaced (or almost regularly spaced) XYZ data files to grid files. When your observations lie on a nearly complete grid with few missing holes, this method is useful for filling in the holes, or creating a grid file with the blanking value assigned to those locations where no data are present. Nearest Neighbor does not extrapolate Z grid values beyond the range of data.

    srfNearestNeighbor

    Polynomial Regression processes the data so that underlying large-scale trends and patterns are shown. This is used for trend surface analysis. Polynomial Regression is very fast for any amount of data, but local details in the data are lost in the generated grid. This method can extrapolate grid values beyond your data's Z range.

    srfRegression

    Radial Basis Function is quite flexible. It compares to Kriging since it generates the best overall interpretations of most data sets. This method produces a result quite similar to Kriging.

    srfRadialBasis

    Modified Shepard's Method is similar to Inverse Distance to a Power but does not tend to generate "bull's eye" patterns, especially when a smoothing factor is used. Modified Shepard's Method can extrapolate values beyond your data's Z range.

    srfShepards

    Triangulation with Linear Interpolation is fast. When you use small data sets, Triangulation with Linear Interpolation generates distinct triangular faces between data points. Triangulation with Linear Interpolation does not extrapolate Z values beyond the range of data.

    srfTriangulation

    Moving Average is most applicable to large and very large data sets (e.g. > 1,000 observations). Moving Average extracts intermediate-scale trends and variations from large, noisy data sets, and it is fast even for very large data sets. This gridding method is a reasonable alternative to Nearest Neighbor for generating grids from large, regularly spaced data sets.

    srfMovingAverage

    Data Metrics is used to create grids of information about the data.

    Local Polynomial is most applicable to data sets that are locally smooth (i.e. relatively smooth surfaces within the search neighborhoods). The computational speed of the method is not significantly affected by the size of the data set.

    srfLocalPolynomial

  • 相关阅读:
    覆盖式发布与非覆盖式发布
    GIT
    Web Service返回符合Xml Schema规范的Xml文档
    下拉渐显菜单
    计算网页上坐标的距离
    初识交互设计
    良好用户体验-实现过程!
    做 用户调研?
    这个没什么技术含量,实现起来很简单?
    SQL SERVER 登录问题!该用户与可信的Sql Server连接无关联
  • 原文地址:https://www.cnblogs.com/sorex/p/2624791.html
Copyright © 2011-2022 走看看